Library GraphTheory.structures

Require Import RelationClasses Morphisms Relation_Definitions.
From HB Require Import structures.
From mathcomp Require Import all_ssreflect.
Require Import edone preliminaries setoid_bigop bij.

Set Implicit Arguments.
Unset Strict Implicit.

Setoids and Label Structures



Notation CEquivalence := CRelationClasses.Equivalence.
Notation CProper := CMorphisms.Proper.
Declare Scope csignature.
Delimit Scope csignature with C.
Notation "A ==> B" := (@CMorphisms.respectful _ _ (A%C) (B%C)) : csignature.
Arguments CMorphisms.Proper [A] _%C _.

Section CProper.
Variables A B C: Type.
Notation i R := (fun x yinhabited (R x y)).
Variable R: A A Type.
Variable S: B B Type.
Variable T: C C Type.
Variable f: A B.
Hypothesis Hf: CProper (R ==> S) f.
Lemma CProper1: Proper (i R ==> i S) f.
Proof. intros x y [H]. . by apply Hf. Qed.
Variable g: A B C.
Hypothesis Hg: CProper (R ==> S ==> T) g.
Lemma CProper2: Proper (i R ==> i S ==> i T) g.
Proof. intros x y [E] u v [F]. . by apply Hg. Qed.
End CProper.

label structures (Definition 4.1)

The original label structure (comment has been split into a commutative monoid (for the vertex labels) and an "elabel Type" (accounting for possible edge-flipping) for edge labels.


HB.mixin Record ComMonoid_of_Setoid A of Setoid_of_Type A :=
  { cm_id : A;
    cm_op : A A A;
    cm_laws : comMonoidLaws cm_id cm_op }.
HB.structure Definition ComMonoid := { A of ComMonoid_of_Setoid A & }.
Notation comMonoid := ComMonoid.type.

Existing Instance cm_laws.
Arguments cm_op {_} _ _.
Declare Scope cm_scope.
Delimit Scope cm_scope with CM.
Infix "⊗" := cm_op (left associativity, at level 25) : cm_scope.
Arguments cm_id {_}.
Notation "1" := cm_id : cm_scope.

ingredients required to label graphs
  • eqv' x y = eqv x y° (when we have an involution _°)
  • eqv' _ = False (otherwise)

HB.mixin Record Elabel_of_Setoid A of Setoid_of_Type A :=
  { eqv': Relation_Definitions.relation A;
    Eqv'_sym: Symmetric eqv';
    eqv01: x y z : A, eqv x y eqv' y z eqv' x z;
    eqv11: x y z : A, eqv' x y eqv' y z eqv x z }.
HB.structure Definition Elabel := { A of Elabel_of_Setoid A & }.
Notation elabelType := Elabel.type.
Infix "≡'" := eqv' (at level 79).

Lemma eqv10 (l : elabelType) (x y z : l) : eqv' x y eqv y z eqv' x z.
Proof. move ⇒ /Eqv'_sym A B. apply: Eqv'_sym. apply: eqv01 A. by symmetry. Qed.

Definition eqv_ (X: elabelType) (b: bool) (x y: X) := if b then x ≡' y else x y.
Notation "x ≡[ b ] y" := (eqv_ b x y) (at level 79).
Global Instance eqv_sym {X: elabelType} {b}: Symmetric (@eqv_ X b).
Proof. case bx y/=. apply Eqv'_sym. by symmetry. Qed.

Lemma eqvb_trans (X : elabelType) (u v w : X) (b1 b2 : bool) :
  u ≡[b1] v v ≡[b2] w u ≡[b1 (+) b2] w.
Proof.
  case: b1; case: b2 ⇒ /=; try solve [exact: eqv01|exact: eqv11|exact: eqv10].
  by transitivity v.
Qed.

Lemma eqvb_transR (X : elabelType) b b' (u v v' : X) :
  u ≡[b (+) b'] v' v' ≡[b'] v u ≡[b] v.
Proof. moveA B. move:(eqvb_trans A B). by rewrite -addbA addbb addbF. Qed.

Lemma eqvb_transL (X : elabelType) b b' (u u' v : X) :
  u' ≡[b (+) b'] v u ≡[b'] u' u ≡[b] v.
Proof. moveA B. move:(eqvb_trans B A). by rewrite addbC -addbA addbb addbF. Qed.

Global Instance eqv_morphim (X: elabelType) :
  Proper (eq ==> eqv ==> eqv ==> iff) (@eqv_ X).
Proof.
  moveb ? <- x x' xx y y' yy.
  change (x ≡[false] x') in xx. change (y ≡[false] y') in yy. splitH.
  - symmetry in xx. apply: eqvb_transR yy. apply: eqvb_transL xx. by rewrite !addbF.
  - symmetry in yy. apply: eqvb_transR yy. apply: eqvb_transL xx. by rewrite !addbF.
Qed.

Lemma eq_unit (a b: unit): a = b.
Proof. by case a; case b. Qed.
Hint Resolve eq_unit: core.

Lemma big_bij_eq (T : comMonoid) (I1 I2 : finType) (F : I1 T) (f : bij I1 I2) (y : I2) :
  \big[cm_op/1%CM]_(x | f x == y) F x F (f^-1 y).
Proof. apply: big_pred1x /=. exact: bij_eqLR. Qed.

Lemma big_bij_eq' (T : comMonoid) (I1 I2 : finType) (F : I1 T) (f : bij I2 I1) (y : I2) :
  \big[cm_op/1%CM]_(x | f^-1 x == y) F x F (f y).
Proof. apply: big_pred1x /=. by rewrite eq_sym -bij_eqLR eq_sym. Qed.

Structure Inference

On unit, eq is the only equivalence relation. Hence, we can safely register unit_setoid as the canonical setoid for unit

Lemma unit_commMonoidLaws : comMonoidLaws tt (fun _ _tt).
Proof. by do 2 (split; try done). Qed.

HB.instance Definition unit_commMonoid :=
  ComMonoid_of_Setoid.Build unit unit_commMonoidLaws.

Any type can be endowed with a flat edge-label structure over the equality setoid. However, we cannot declare this canonical for arbitrary types, because this would take precedence over all other setoids. Instead, we introduce an alias flat and equip it with a flat edge-label structure. Note that flat A is convertible to A

Section E.
Variable (A : Type).
Let rel := (fun _ _ : AFalse).
Let rel_sym : Symmetric rel. by []. Qed.
Let rel01 (x y z : A) : x = y rel y z rel x z. by []. Qed.
Let rel11 (x y z : A) : rel x y rel y z x = z. by []. Qed.

HB.instance Definition flat_elabel_mixin :=
  @Elabel_of_Setoid.Build (flat A) rel rel_sym rel01 rel11.
End E.