Require Import RelationClasses.
From mathcomp Require Import all_ssreflect.
Require Import edone finite_quotient preliminaries sgraph.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Local Open Scope quotient_scope.
Set Bullet Behavior "Strict Subproofs".
From mathcomp Require Import all_ssreflect.
Require Import edone finite_quotient preliminaries sgraph.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Local Open Scope quotient_scope.
Set Bullet Behavior "Strict Subproofs".
Tree Width and Minors
Tree Decompositions
Record sdecomp (T : forest) (G : sgraph) (B : T -> {set G}) := SDecomp
{ sbag_cover x : exists t, x \in B t;
sbag_edge x y : x -- y -> exists t, (x \in B t) && (y \in B t);
sbag_conn x t1 t2 : x \in B t1 -> x \in B t2 ->
connect (restrict [pred t | x \in B t] sedge) t1 t2}.
Arguments sdecomp T G B : clear implicits.
Lemma sdecomp_eq (V : finType) (e1 e2 : rel V) (T:forest) (D : T -> {set V})
(e1_sym : symmetric e1) (e1_irrefl : irreflexive e1)
(e2_sym : symmetric e2) (e2_irrefl : irreflexive e2):
e1 =2 e2 ->
sdecomp T (SGraph e1_sym e1_irrefl) D ->
sdecomp T (SGraph e2_sym e2_irrefl) D.
Proof.
move => E [D1 D2 D3]. split => //.
move => x y /= xy. apply: D2 => /=. by rewrite E.
Qed.
Definition triv_sdecomp (G : sgraph) :
sdecomp tunit G (fun _ => [set: G]).
Proof.
split => [x|e|x [] [] _ _]; try by exists tt; rewrite !inE.
exact: connect0.
Qed.
Lemma sg_iso_decomp (G1 G2 : sgraph) (T : forest) B1 :
sdecomp T G1 B1 -> sg_iso G1 G2 ->
exists2 B2, sdecomp T G2 B2 & width B2 = width B1.
Proof.
case => D1 D2 D3 [f g can_f can_g hom_f hom_g].
exists (fun t => [set g x | x in B1 t]).
- split.
+ move => x. case: (D1 (f x)) => t Ht. exists t.
apply/imsetP. by exists (f x).
+ move => x y /hom_f /D2 [t] /andP [t1 t2].
exists t. by rewrite -[x]can_f -[y]can_f !mem_imset.
+ move => x t1 t2 /imsetP [x1] X1 ? /imsetP [x2] X2 P. subst.
have ?: x1 = x2 by rewrite -[x1]can_g P can_g. subst => {P}.
have := D3 _ _ _ X1 X2.
apply: connect_mono => t t' /=.
rewrite !inE -andbA => /and3P [A B ->]. by rewrite !mem_imset.
- rewrite /width. apply: eq_bigr => i _. rewrite card_imset //.
apply: can_inj can_g.
Qed.
Section DecompTheory.
Variables (G : sgraph) (T : forest) (B : T -> {set G}).
Implicit Types (t u v : T) (x y z : G).
Hypothesis decD : sdecomp T G B.
Arguments sbag_conn [T G B] dec x t1 t2 : rename.
Lemma decomp_clique (S : {set G}) :
0 < #|S| -> clique S -> exists t : T, S \subset B t.
Proof.
move: S.
apply: (nat_size_ind (f := fun S : {set G} => #|S|)) => S IH inh_S clique_S.
case: (leqP #|S| 2) => card_S.
- case: (card12 inh_S card_S) => [[x]|[x] [y] [Hxy]] ?; subst S.
+ case: (sbag_cover decD x) => t A. exists t. by rewrite sub1set.
+ have xy: x -- y. by apply: clique_S => //; rewrite !inE !eqxx ?orbT.
case: (sbag_edge decD xy) => t A. exists t. by rewrite subUset !sub1set.
- have [v [v0] [Hv Hv0 X]] := card_gt1P (ltnW card_S).
pose S0 := S :\ v.
pose T0 := [set t | S0 \subset B t].
(* Wlog. no bag from T0 contains v *)
case: (boolP [forall t in T0, v \notin B t]); last first. (* TODO: wlog? *)
{ rewrite negb_forall_in. case/exists_inP => t. rewrite inE negbK => H1 H2.
exists t. by rewrite -(setD1K Hv) subUset sub1set H2 H1. }
move/forall_inP => HT0.
have HT0' t : v \in B t -> ~~ (S0 \subset B t).
{ apply: contraTN => C. apply: HT0. by rewrite inE. }
have pairs x y : x \in S -> y \in S -> exists t, x \in B t /\ y \in B t.
{ move => xS yS. case: (IH [set x;y]).
- rewrite cardsU1 cards1 addn1. case (_ \notin _) => //=. exact: ltnW.
- by rewrite cards2.
- apply: sub_in11W clique_S. apply/subsetP. by rewrite subUset !sub1set xS.
- move => t. rewrite subUset !sub1set => /andP [? ?]. by exists t. }
(* obtain some node c whose bag contains [set v,v0] and
consider its subtree outside of T0 *)
have [c [Hc1 Hc2]] : exists t, v \in B t /\ v0 \in B t by apply: pairs.
pose C := [set t in [predC T0] | connect (restrict [predC T0] sedge) c t].
have inC: c \in C. { rewrite !inE connect0 andbT. exact: HT0'. }
have con_C : connected C.
{ apply: connected_restrict. move: inC. rewrite inE. by case/andP. }
have dis_C : [disjoint C & T0].
{ rewrite disjoints_subset /C. apply/subsetP => t. rewrite !inE. by case/andP. }
(* There exists an edge connecting C and T0 *)
have [t0 [c0 [Ht0 Hc0 tc0]]] : exists t0 c0, [/\ t0 \in T0, c0 \in C & t0 -- c0].
{ case: (IH S0 _ _) => [|||t Ht].
- by rewrite [#|S|](cardsD1 v) Hv.
- apply/card_gt0P. exists v0. by rewrite !inE eq_sym X.
- apply: sub_in11W clique_S. apply/subsetP. by rewrite subD1set.
- have A : v0 \in B t. { apply (subsetP Ht). by rewrite !inE eq_sym X. }
have/uPathRP [|p Ip _] := (sbag_conn decD v0 c t Hc2 A).
{ apply: contraTneq inC => ->. by rewrite !inE Ht. }
move: (c) p Ip (inC). apply: irred_ind; first by rewrite !inE Ht.
move => x z p xz Ip xp IHp xC.
case: (boolP (z \in C)) => [|zNC {IHp}] ; first exact: IHp.
exists z; exists x. rewrite sgP. split => //. apply: contraNT zNC => H.
rewrite 2!inE /= in xC. case/andP : xC => H1 H2.
rewrite 2!inE /= (negbTE H) /=. apply: connect_trans H2 _.
apply: connect1 => /=. by rewrite 2!inE H1 2!inE xz H. }
(* In fact, every path into C must use this edge (and c0) *)
have t0P c' (p : Path t0 c') : irred p -> c' \in C -> c0 \in p.
{ move => Ip inC'.
case: (altP (c0 =P c')) => [-> |?]. by rewrite nodes_end.
have/uPathRP [//|q Iq /subsetP subC] := con_C _ _ Hc0 inC'.
suff -> : p = pcat (edgep tc0) q by rewrite mem_pcat nodes_end.
apply: forest_is_forest; (repeat split) => //.
rewrite irred_cat irred_edge Iq /= disjoint_edgep //.
apply: contraTN Ht0 => /subC. rewrite 2!inE /=. by case/andP. }
(* We show that c0 contains the full clique *)
suff A : c0 \in T0 by case: (disjointE dis_C Hc0 A).
rewrite inE. apply/subsetP => u u_in_S0.
have Hu: u \in B t0. { rewrite inE in Ht0. exact: (subsetP Ht0). }
have [cu [Hcu1 Hcu2]] : exists t, u \in B t /\ v \in B t.
{ apply: (pairs u v) => //. move: u_in_S0. rewrite inE. by case: (_ \notin _). }
move:(sbag_conn decD u t0 cu Hu Hcu1).
case/uPathRP => [|q irr_p /subsetP has_u].
{ apply: contraTneq Hcu2 => <-. exact: HT0. }
suff Hq : c0 \in q. { move/has_u : Hq. by rewrite inE. }
apply: t0P irr_p _. rewrite !inE /= HT0' //=.
move: (sbag_conn decD v c cu Hc1 Hcu2).
apply: connect_mono => t t' /=.
rewrite !inE -andbA => /and3P [*]. by rewrite !HT0'.
Qed.
End DecompTheory.
Definition complete_rel n := [rel x y : 'I_n | x != y].
Fact complete_sym n : symmetric (complete_rel n).
Proof. move => x y /=. by rewrite eq_sym. Qed.
Fact complete_irrefl n : irreflexive (complete_rel n).
Proof. move => x /=. by rewrite eqxx. Qed.
Definition complete n := SGraph (@complete_sym n) (@complete_irrefl n).
Notation "''K_' n" := (complete n)
(at level 8, n at level 2, format "''K_' n").
Definition C3 := 'K_3.
Definition K4 := 'K_4.
Lemma K4_bag (T : forest) (D : T -> {set K4}) :
sdecomp T K4 D -> exists t, 4 <= #|D t|.
Proof.
move => decD.
case: (@decomp_clique _ _ _ decD setT _ _) => //.
- by rewrite cardsT card_ord.
- move => t A. exists t. rewrite -[4](card_ord 4) -cardsT.
exact: subset_leq_card.
Qed.
K4 has with at least 4
Lemma K4_width (T : forest) (D : T -> {set K4}) :
sdecomp T K4 D -> 4 <= width D.
Proof. case/K4_bag => t Ht. apply: leq_trans Ht _. exact: leq_bigmax. Qed.
Definition minor_map (G H : sgraph) (phi : G -> option H) :=
[/\ (forall y : H, exists x : G, phi x = Some y),
(forall y : H, connected (phi @^-1 Some y)) &
(forall x y : H, x -- y -> exists x0 y0 : G,
[/\ x0 \in phi @^-1 Some x, y0 \in phi @^-1 Some y & x0 -- y0])].
Definition minor (G H : sgraph) : Prop := exists phi : G -> option H, minor_map phi.
Fact minor_of_map (G H : sgraph) (phi : G -> option H):
minor_map phi -> minor G H.
Proof. case => *. by exists phi. Qed.
Lemma minor_map_comp (G H K : sgraph) (f : G -> option H) (g : H -> option K) :
minor_map f -> minor_map g -> minor_map (obind g \o f).
Proof.
move=> [f1 f2 f3] [g1 g2 g3]; rewrite /funcomp; split.
- move => y. case: (g1 y) => y'. case: (f1 y') => x E1 ?.
exists x. by rewrite E1.
- move => z x y. rewrite !inE.
case Ef : (f x) => [fx|] //= gfx. case Eg : (f y) => [fy|] //= gfy.
move: (g2 z fx fy). rewrite !inE. case/(_ _ _)/Wrap => // /connectP => [[p]].
elim: p x fx Ef gfx => /= [|a p IH] x fx Ef gfx.
+ move => _ ?. subst fy.
move: (f2 fx x y). rewrite !inE Ef Eg. case/(_ _ _)/Wrap => //.
apply: connect_mono => a b /=. rewrite !inE -andbA.
case/and3P => /eqP-> /eqP-> -> /=. by rewrite (eqP gfx) !eqxx.
+ rewrite !inE -!andbA => /and4P [H1 H2 H3 H4] H5.
case: (f1 a) => x' Hx'. apply: (connect_trans (y := x')); last exact: IH H5.
move/f3 : (H3) => [x0] [y0] [X1 X2 X3].
apply: (connect_trans (y := x0)); last apply: (connect_trans (y := y0)).
* move: (f2 fx x x0). rewrite !inE ?Ef ?eqxx in X1 *. case/(_ _ _)/Wrap => //.
apply: connect_mono => u v /=. rewrite !inE -andbA.
case/and3P => /eqP-> /eqP-> -> /=. by rewrite H1.
* apply: connect1. rewrite /= !inE ?X3 ?andbT in X1 X2 *.
by rewrite (eqP X1) (eqP X2) /= (eqP gfx) eqxx.
* move: (f2 a y0 x' X2). case/(_ _)/Wrap. by rewrite !inE Hx'.
apply: connect_mono => u v /=. rewrite !inE -andbA.
case/and3P => /eqP-> /eqP-> -> /=. by rewrite H2.
- move => x y /g3 [x'] [y'] [Hx' Hy'] /f3 [x0] [y0] [Hx0 Hy0 ?].
exists x0. exists y0. rewrite !inE in Hx' Hy' Hx0 Hy0 *.
split => //; reflect_eq; by rewrite (Hx0,Hy0) /= (Hx',Hy').
Qed.
Lemma minor_trans : Transitive minor.
Proof.
move => G H I [f mm_f] [g mm_g]. eexists.
exact: minor_map_comp mm_f mm_g.
Qed.
Definition total_minor_map (G H : sgraph) (phi : G -> H) :=
[/\ (forall y : H, exists x, phi x = y),
(forall y : H, connected (phi @^-1 y)) &
(forall x y : H, x -- y ->
exists x0 y0, [/\ x0 \in phi @^-1 x, y0 \in phi @^-1 y & x0 -- y0])].
Definition strict_minor (G H : sgraph) : Prop :=
exists phi : G -> H, total_minor_map phi.
Lemma map_of_total (G H : sgraph) (phi : G -> H) :
total_minor_map phi -> minor_map (Some \o phi).
Proof. case => A B C. split => // y. case: (A y) => x <-. by exists x. Qed.
Lemma strict_is_minor (G H : sgraph) : strict_minor G H -> minor G H.
Proof. move => [phi A]. exists (Some \o phi). exact: map_of_total. Qed.
Lemma sub_minor (S G : sgraph) : subgraph S G -> minor G S.
Proof.
move => [h inj_h hom_h].
pose phi x := if @idP (x \in codom h) is ReflectT p then Some (iinv p) else None.
exists phi; split.
- move => y. exists (h y). rewrite /phi.
case: {-}_ / idP => [p|]; by rewrite ?iinv_f ?codom_f.
- move => y x0 y0. rewrite !inE {1 2}/phi.
case: {-}_ / idP => // p /eqP[E1].
case: {-}_ / idP => // q /eqP[E2].
suff -> : (x0 = y0) by exact: connect0.
by rewrite -(f_iinv p) -(f_iinv q) E1 E2.
- move => x y A. move/hom_h : (A) => B.
exists (h x). exists (h y). rewrite !inE /phi B.
+ by do 2 case: {-}_ / idP => [?|]; rewrite ?codom_f ?iinv_f ?eqxx //.
+ apply: contraTneq A => /inj_h ->. by rewrite sgP.
Qed.
Lemma iso_strict_minor (G H : sgraph) : sg_iso G H -> strict_minor H G.
Proof.
case=> g h ghK hgK gH hH.
have in_preim_g x y : (y \in g @^-1 x) = (y == h x).
rewrite -mem_preim; exact: can2_eq.
exists g; split.
+ by move=> y; exists (h y); rewrite hgK.
+ move=> y x1 x2. rewrite !in_preim_g => /eqP-> /eqP->. exact: connect0.
+ move=> x y xy. exists (h x); exists (h y). rewrite !in_preim_g.
split=> //. exact: hH.
Qed.
Lemma induced_minor (G : sgraph) (S : {set G}) : minor G (induced S).
Proof. apply: sub_minor. exact: induced_sub. Qed.
Definition edge_surjective (G1 G2 : sgraph) (h : G1 -> G2) :=
forall x y : G2 , x -- y -> exists x0 y0, [/\ h x0 = x, h y0 = y & x0 -- y0].
(* The following should hold but does not fit the use case for minors *)
Lemma rename_sdecomp (T : forest) (G H : sgraph) D (dec_D : sdecomp T G D) (h :G -> H) :
hom_s h -> surjective h -> edge_surjective h ->
(forall x y, h x = h y -> exists t, (x \in D t) && (y \in D t)) ->
@sdecomp T _ (rename D h).
Abort.
Lemma width_minor (G H : sgraph) (T : forest) (B : T -> {set G}) :
sdecomp T G B -> minor G H -> exists B', sdecomp T H B' /\ width B' <= width B.
Proof.
move => decT [phi [p1 p2 p3]].
pose B' t := [set x : H | [exists (x0 | x0 \in B t), phi x0 == Some x]].
exists B'. split.
- split.
+ move => y. case: (p1 y) => x /eqP Hx.
case: (sbag_cover decT x) => t Ht.
exists t. apply/pimsetP. by exists x.
+ move => x y xy. move/p3: xy => [x0] [y0]. rewrite !inE => [[H1 H2 H3]].
case: (sbag_edge decT H3) => t /andP [T1 T2]. exists t.
apply/andP; split; apply/pimsetP; by [exists x0|exists y0].
+ have conn_pre1 t1 t2 x x0 :
phi x0 == Some x -> x0 \in B t1 -> x0 \in B t2 ->
connect (restrict [pred t | x \in B' t] sedge) t1 t2.
{ move => H1 H2 H3. move: (sbag_conn decT H2 H3).
apply: connect_mono => u v /=. rewrite !in_simpl -!andbA => /and3P [? ? ?].
apply/and3P; split => //; apply/pimsetP; eexists; eauto. }
move => x t1 t2 /pimsetP [x0 X1 X2] /pimsetP [y0 Y1 Y2].
move: (p2 x x0 y0). rewrite !inE. case/(_ _ _)/Wrap => // /connectP [p].
elim: p t1 x0 X1 X2 => /= [|z0 p IH] t1 x0 X1 X2.
* move => _ E. subst x0. exact: conn_pre1 X1 Y1.
* rewrite -!andbA => /and3P [H1 H2 /andP [H3 H4] H5].
case: (sbag_edge decT H3) => t /andP [T1 T2].
apply: (connect_trans (y := t)).
-- move => {p IH H4 H5 y0 Y1 Y2 X2}. rewrite !inE in H1 H2.
exact: conn_pre1 X1 T1.
-- apply: IH H4 H5 => //. by rewrite inE in H2.
- apply: max_mono => t. exact: pimset_card.
Qed.
Definition K4_free (G : sgraph) := ~ minor G K4.
Lemma minor_K4_free (G H : sgraph) :
minor G H -> K4_free G -> K4_free H.
Proof. move => M F C. apply: F. exact: minor_trans C. Qed.
Lemma subgraph_K4_free (G H : sgraph) :
subgraph H G -> K4_free G -> K4_free H.
Proof. move/sub_minor. exact: minor_K4_free. Qed.
Lemma iso_K4_free (G H : sgraph) :
sg_iso G H -> K4_free H -> K4_free G.
Proof. move => iso_GH. apply: subgraph_K4_free. exact: iso_subgraph. Qed.
Lemma TW2_K4_free (G : sgraph) (T : forest) (B : T -> {set G}) :
sdecomp T G B -> width B <= 3 -> K4_free G.
Proof.
move => decT wT M. case: (width_minor decT M) => B' [B1 B2].
suff: 4 <= 3 by [].
apply: leq_trans wT. apply: leq_trans B2. exact: K4_width.
Qed.
Section AddNode.
Variables (G : sgraph) (N : {set G}).
Definition add_node_rel (x y : option G) :=
match x,y with
| None, Some y => y \in N
| Some x, None => x \in N
| Some x,Some y => x -- y
| None, None => false
end.
Lemma add_node_sym : symmetric add_node_rel.
Proof. move => [a|] [b|] //=. by rewrite sgP. Qed.
Lemma add_node_irrefl : irreflexive add_node_rel.
Proof. move => [a|] //=. by rewrite sgP. Qed.
Definition add_node := SGraph add_node_sym add_node_irrefl.
Lemma add_node_lift_Path (x y : G) (p : Path x y) :
exists q : @Path add_node (Some x) (Some y), nodes q = map Some (nodes p).
Proof.
case: p => p0 p'.
set q0 : seq add_node := map Some p0.
have q' : @spath add_node (Some x) (Some y) q0.
move: p'; rewrite /spath/= last_map (inj_eq (@Some_inj _)).
move=> /andP[p' ->]; rewrite andbT.
exact: project_path p'.
by exists (Sub _ q'); rewrite !nodesE /=.
Qed.
(* TODO: theory for induced [set~ : None : add_node] *)
Lemma minor_induced_add_node : @minor_map (induced [set~ None : add_node]) G val.
Proof.
have inNoneD (a : G) : Some a \in [set~ None] by rewrite !inE. split.
+ move=> y. by exists (Sub (Some y) (inNoneD y)).
+ move=> y x1 x2. rewrite -!mem_preim =>/eqP<- /eqP/val_inj->. exact: connect0.
+ move=> x y xy. exists (Sub (Some x) (inNoneD x)).
exists (Sub (Some y) (inNoneD y)). by split; rewrite -?mem_preim.
Qed.
End AddNode.
Arguments add_node : clear implicits.
Lemma add_node_complete n : sg_iso 'K_n.+1 (add_node 'K_n setT).
Proof.
pose g : add_node 'K_n setT -> 'K_n.+1 := oapp (lift ord_max) ord_max.
pose h : 'K_n.+1 -> add_node 'K_n setT := unlift ord_max.
exists g h; rewrite /g/h/=.
+ move=> [x|] /=; [by rewrite liftK | by rewrite unlift_none].
+ by move=> x; case: unliftP.
+ move=> [x|] [y|] //=; rewrite ?[_ == ord_max]eq_sym ?neq_lift //.
by rewrite (inj_eq (@lift_inj _ ord_max)).
+ move=> x y /=; do 2 case: unliftP => /= [?|]-> //; last by rewrite eqxx.
by rewrite (inj_eq (@lift_inj _ ord_max)).
Qed.
Lemma connected_add_node (G : sgraph) (U A : {set G}) :
connected A -> @connected (add_node G U) (Some @: A).
Proof.
move => H x y /imsetP [x0 Hx0 ->] /imsetP [y0 Hy0 ->].
have/uPathRP := H _ _ Hx0 Hy0.
case: (x0 =P y0) => [-> _|_ /(_ isT) [p _ Hp]]; first exact: connect0.
case: (add_node_lift_Path U p) => q E.
apply: (connectRI (p := q)) => ?.
rewrite !inE mem_path -nodesE E.
case/mapP => z Hz ->. rewrite mem_imset //. exact: (subsetP Hp).
Qed.
Lemma add_node_minor (G G' : sgraph) (U : {set G}) (U' : {set G'}) (phi : G -> G') :
(forall y, y \in U' -> exists2 x, x \in U & phi x = y) ->
total_minor_map phi ->
minor (add_node G U) (add_node G' U').
Proof.
move => H [M1 M2 M3].
apply: strict_is_minor. exists (omap phi). split.
- case => [y|]; last by exists None. case: (M1 y) => x E.
exists (Some x). by rewrite /= E.
- move => [y|].
+ rewrite preim_omap_Some. exact: connected_add_node.
+ rewrite preim_omap_None. exact: connected1.
- move => [x|] [y|] //=.
+ move/M3 => [x0] [y0] [H1 H2 H3]. exists (Some x0); exists (Some y0).
by rewrite !preim_omap_Some !mem_imset.
+ move/H => [x0] H1 H2. exists (Some x0); exists None.
rewrite !preim_omap_Some !preim_omap_None !inE !eqxx !mem_imset //.
by rewrite -mem_preim H2.
+ move/H => [y0] H1 H2. exists None; exists (Some y0).
rewrite !preim_omap_Some !preim_omap_None !inE !eqxx !mem_imset //.
by rewrite -mem_preim H2.
Qed.
Lemma minor_with (H G': sgraph) (S : {set H}) (i : H) (N : {set G'})
(phi : (sgraph.induced S) -> option G') :
i \notin S ->
(forall y, y \in N -> exists2 x , x \in phi @^-1 (Some y) & val x -- i) ->
@minor_map (sgraph.induced S) G' phi ->
minor H (add_node G' N).
Proof.
move => Hi Hphi mm_phi.
pose psi (u:H) : option (add_node G' N) :=
match @idP (u \in S) with
| ReflectT p => obind (fun x => Some (Some x)) (phi (Sub u p))
| ReflectF _ => if u == i then Some None else None
end.
(* NOTE: use (* case: {-}_ / idP *) to analyze psi *)
have psi_G' (a : G') : psi @^-1 (Some (Some a)) = val @: (phi @^-1 (Some a)).
{ apply/setP => x. rewrite !inE. apply/eqP/imsetP.
+ rewrite /psi. case: {-}_ / idP => p; last by case: ifP.
case E : (phi _) => [b|//] /= [<-]. exists (Sub x p) => //. by rewrite !inE E.
+ move => [[/= b Hb] Pb] ->. rewrite /psi. case: {-}_ / idP => //= Hb'.
rewrite !inE (bool_irrelevance Hb Hb') in Pb. by rewrite (eqP Pb). }
have psi_None : psi @^-1 (Some None) = [set i].
{ apply/setP => z. rewrite !inE /psi.
case: {-}_ / idP => [p|_]; last by case: ifP.
have Hz : z != i. { apply: contraNN Hi. by move/eqP <-. }
case: (phi _) => [b|]; by rewrite (negbTE Hz). }
case: mm_phi => M1 M2 M3. exists psi;split.
- case.
+ move => a. case: (M1 a) => x E. exists (val x). apply/eqP.
rewrite mem_preim psi_G' mem_imset //. by rewrite !inE E.
+ exists i. rewrite /psi. move: Hi.
case: {-}_ / idP => [? ?|_ _]; by [contrab|rewrite eqxx].
- case.
+ move => y. move: (M2 y). rewrite psi_G'. exact: connected_in_subgraph.
+ rewrite psi_None. exact: connected1.
- move => [a|] [b|]; last by rewrite sg_irrefl.
+ move => /= /M3 [x0] [y0] [? ? ?].
exists (val x0). exists (val y0). by rewrite !psi_G' !mem_imset.
+ move => /= /Hphi [x0] ? ?. exists (val x0); exists i. by rewrite psi_None set11 !psi_G' !mem_imset.
+ move => /= /Hphi [x0] ? ?. exists i;exists (val x0). by rewrite sg_sym psi_None set11 !psi_G' !mem_imset.
Qed.