The corresponding .v file (with proofs) is here; see module utas for monoids, semirings, Kleene algebras, and allegories; and module mall for cyclic MALL (or involutive residuated lattices) and residuated lattices (without additive constants).




Definition apply A a B (f: A -> B) := f a.
Notation refl := (refl_equal _).

preliminary lemmas for working with cyclic permutations

Section perm.

  Variable A: Set.

  Lemma app_app: forall (h k h' k': list A), h++k = h'++k' ->
    exists l', h=h'++l' /\ k'=l'++k \/ h'=h++l' /\ k=l'++k'.

  Lemma nil_app: forall (h k: list A), [] = h++k -> []=h /\ []=k.

  Lemma consnil_app: forall u (h k: list A), [u] = h++k -> [u]=h /\ []=k \/ []=h /\ [u]=k.

  Lemma cons_app: forall u (l h k: list A), u::l = h++k -> []=h /\ u::l=k \/ exists h', h=u::h' /\ l=h'++k.

  Lemma split_select: forall (h k h' k': list A), h++k = h'++k' ->
    exists l', h=h'++l' /\ k'=l'++k \/ h'=h++l' /\ k=l'++k'.

  Inductive perm: relation (list A) :=
  | perm_app: forall h k, perm (h++k) (k++h).

  Global Instance perm_equivalence: Equivalence perm.

  Infix " (=) " := perm (at level 80).

  Lemma permut_cons: forall u l k, l++[u] (=) k -> u::l (=) k.

  Lemma permut_app: forall h l k, l++h (=) k -> h++l (=) k.

  Lemma pmor1: forall P: list A -> Prop, (forall a l, P (l++[a]) -> P (a::l)) -> Proper (perm ==> iff) P.

End perm.

equality of lists, modulo cyclic permutations
Infix " (=) " := perm (at level 80).


X is the set of variables, it could be kept abstract
Definition X := nat.

trivial typing environment
Definition ttt (x: X) := tt.

Untyping theorem for cyclic MLL

Module MLL.

terms (formulae)
  Inductive T: Set :=
  | dot: T -> T -> T
  | par: T -> T -> T
  | one: T
  | bot: T
  | var: X -> T
  | rav: X -> T.


notations
  Notation "x $ y" := (par x y) (at level 50, left associativity): U_scope.
  Notation "x ⨂ y" := (dot x y) (at level 40, left associativity): U_scope.
  Notation "1" := (one): U_scope.
  Notation "⊥" := (bot): U_scope.

linear negation, note that it reverses arguments of tensors and pars
  Fixpoint dual u :=
    match u with
      | a b => dual b $ dual a
      | a $ b => dual b dual a
      | 1 =>
      | => 1
      | var i => rav i
      | rav i => var i
    end.

linear negation is involutive, and hence, injective
  Lemma dual_invol: forall u, dual (dual u) = u.

  Lemma dual_inj: forall u v, dual u = dual v -> u = v.

extension of linear negation to lists, note that it reverses lists
  Fixpoint ldual l :=
    match l with
      | [] => []
      | a::l => ldual l ++ [dual a]
    end.

input and output formulae (Danos-Regnier polarities)
  Inductive input: T -> Prop :=
  | i_rav: forall i, input (rav i)
  | i_par: forall a b, input a -> input b -> input (a $ b)
  | i_bot: input
  | i_dot_l: forall a b, input a -> output b -> input (a b)
  | i_dot_r: forall a b, output a -> input b -> input (a b)
  with output: T -> Prop :=
  | o_var: forall i, output (var i)
  | o_dot: forall a b, output a -> output b -> output (a b)
  | o_one: output 1
  | o_par_l: forall a b, output a -> input b -> output (a $ b)
  | o_par_r: forall a b, input a -> output b -> output (a $ b)
  .

input lists
  Inductive linput: list T -> Prop :=
  | i_nil: linput nil
  | i_cons: forall i l, input i -> linput l -> linput (i::l).

linear negation goes from input to output formulae, and vice-versa
  Lemma dual_input: forall u, input u -> output (dual u)
  with dual_output: forall u, output u -> input (dual u).

lemmas about input lists
  Lemma i_app_inv: forall h k, linput (h++k) -> linput h /\ linput k.


  Lemma i_app: forall h k, linput h -> linput k -> linput (h++k).

a formula cannot be both input and output (not used in the sequel)
  Lemma not_i_and_o: forall u, input u -> output u -> False.


  Section types.

I is the set of pretypes, s and t give the typing environment (source and target)
    Variable I: Set.
    Variables s t: X -> I.

MLL typing judgement, for formulae, and lists
    Inductive typed: I -> I -> T -> Prop :=
    | t_var: forall x, typed (s x) (t x) (var x)
    | t_rav: forall x, typed (t x) (s x) (rav x)
    | t_one: forall n, typed n n 1
    | t_bot: forall n, typed n n
    | t_dot: forall n m o u v, typed n m u -> typed m o v -> typed n o (u v)
    | t_par: forall n m o u v, typed n m u -> typed m o v -> typed n o (u $ v).

    Inductive ltyped: I -> I -> list T -> Prop :=
    | t_nil: forall n, ltyped n n []
    | t_cons: forall n m p l u, typed n m u -> ltyped m p l -> ltyped n p (u::l).


    Lemma t_app: forall l l' n m p, ltyped n m l -> ltyped m p l' -> ltyped n p (l++l').

    Lemma t_app_inv: forall l l' n p, ltyped n p (l++l') -> exists2 m, ltyped n m l & ltyped m p l'.

linear negation mirrors types
    Lemma t_dual: forall u n m, typed n m u -> typed m n (dual u).

    Lemma t_ldual: forall l n m, ltyped n m l -> ltyped m n (ldual l).


injectivity property of typing derivations
    Lemma typed_inj: forall u n m, typed n m u -> forall n' m', typed n' m' u -> n=n' /\ m=m' \/ n=m /\ n'=m'.

    Lemma ltyped_inj: forall l n m, ltyped n m l -> forall n' m', ltyped n' m' l -> n=n' /\ m=m' \/ n=m /\ n'=m'.


typed sequent system for cyclic MLL
    Inductive seq: I -> list T -> Prop :=
    | seq_ax: forall i, seq (t i) [rav i; var i]
    | seq_one: forall n, seq n [1]
    | seq_bot: forall l n, seq n l -> seq n (::l)
    | seq_dot: forall a b h l n, seq n (l++[a]) -> seq n (b::h) -> seq n (l++a b::h)
    | seq_par: forall a b l n, seq n (a::b::l) -> seq n (a $ b::l)
    | seq_rot: forall a l n m, typed n m a -> seq m (l++[a]) -> seq n (a::l).


sanity check: derivable sequents have square types
    Lemma seq_typed: forall l n, seq n l -> ltyped n n l.


admissible variant of rule seq_rot: rotate the sequent to an arbitrary position
    Lemma seq_rot': forall h l n m, ltyped m n h -> seq n (l++h) -> seq m (h++l).

admissible variant of rule seq_dot
    Lemma seq_dot': forall a b h l n m, typed n m a -> seq n (a::l) -> seq m (b::h) -> seq n (a b::h++l).

the sequent system is "reflexive"
    Lemma seq_refl: forall u n m, typed n m u -> seq m [dual u; u].

input sequents cannot be proved
    Lemma linput_not_seq: forall l n, seq n l -> linput l -> False.

cut admissibility (not proved here, not used in the sequel)
    Lemma seq_trans: forall n u l h, seq n (l++[u]) -> seq n (dual u::h) -> seq n (l++h).

  End types.

untyped means typed in the trivial environment ; useq mean derivable in the untyped setting ;
  Notation untyped u := (typed ttt ttt _ _ u).
  Notation useq := (seq ttt ttt tt).


terms and lists are always untyped
  Lemma always_untyped: forall u, typed ttt ttt tt tt u.

  Lemma always_luntyped: forall l, ltyped ttt ttt tt tt l.



  Section erase.

    Variable I: Set.
    Variables s t: X -> I.

    Notation ltyped := (ltyped s t).
    Notation typed := (typed s t).
    Notation seq := (seq s t).

key lemma: types of derivable sequents are squares
    Lemma useq_mono: forall l, useq l -> forall n m, ltyped n m l -> n=m.

untyping theorem for cyclic MLL
    Theorem untype: forall l, useq l -> forall n, ltyped n n l -> seq n l.

typed derivable sequents are untyped derivable
    Lemma erase: forall l n, seq n l -> useq l.

 End erase.

End MLL.

Untyping theorem for non commutative IMLL, i.e., residuated monoids

Module IMLL.


terms
  Inductive T: Set :=
  | dot: T -> T -> T
  | ldv: T -> T -> T
  | rdv: T -> T -> T
  | one: T
  | var: X -> T.


notations
  Notation "x * y" := (dot x y) (at level 40, left associativity): V_scope.
  Notation "x / y" := (rdv x y) (at level 40, left associativity): V_scope.
  Notation "x \ y" := (ldv x y) (at level 40, left associativity): V_scope.
  Notation "1" := (one): V_scope.


encoding of IMLL formulae into MLL formulae
  Fixpoint to_MLL (u: T): MLL.T :=
    match u with
      | a * b => to_MLL a to_MLL b
      | a \ b => dual (to_MLL a) $ to_MLL b
      | a / b => to_MLL a $ dual (to_MLL b)
      | 1 => MLL.one
      | var x => MLL.var x
    end.

extension to lists of formulae (warning: this function already applies the linear negation)
  Fixpoint lto_MLL l :=
    match l with
     | [] => []
     | a::q => lto_MLL q++[dual (to_MLL a)]
    end.

encoding of a concatenation
  Lemma lto_MLL_app: forall h k, lto_MLL (h++k) = lto_MLL k ++ lto_MLL h.

the encoding produces output formulae
  Lemma to_MLL_output: forall u, MLL.output (to_MLL u).

the encoding of list produces lists of input formulae
  Lemma lto_MLL_linput: forall l, MLL.linput (lto_MLL l).


inversion lemmas, to reason about cyclic permutations
  Lemma lto_MLL_app_inv: forall q l h,
    l++h = lto_MLL q -> exists l', exists h', q=h'++l' /\ lto_MLL l' = l /\ lto_MLL h' = h.

  Lemma lto_MLL_cons_inv: forall q u h,
    u::h = lto_MLL q -> exists u', exists h', q=h'++[u'] /\ to_MLL u' = MLL.dual u /\ lto_MLL h' = h.

inversion of the encoding


  Section types.

I is the set of pretypes, s and t give the typing environment (source and target)
    Variable I: Set.
    Variables s t: X -> I.

IMLL typing judgements, for formulae and lists
    Inductive typed: I -> I -> T -> Prop :=
    | t_var: forall x, typed (s x) (t x) (var x)
    | t_one: forall n, typed n n 1
    | t_dot: forall n m o u v, typed n m u -> typed m o v -> typed n o (u * v)
    | t_ldv: forall n m o u v, typed m n u -> typed m o v -> typed n o (u \ v)
    | t_rdv: forall n m o u v, typed o m u -> typed n m v -> typed n o (v / u).

    Inductive ltyped: I -> I -> list T -> Prop :=
    | t_nil: forall n, ltyped n n []
    | t_cons: forall n m p l u, typed n m u -> ltyped m p l -> ltyped n p (u::l).


    Lemma t_app: forall l l' n m p, ltyped n m l -> ltyped m p l' -> ltyped n p (l++l').

    Lemma t_app_inv: forall l l' n p, ltyped n p (l++l') -> exists2 m, ltyped n m l & ltyped m p l'.


injectivity property of types
    Lemma typed_inj: forall u n m, typed n m u -> forall n' m', typed n' m' u -> n=n' /\ m=m' \/ n=m /\ n'=m'.

    Lemma ltyped_inj: forall l n m, ltyped n m l -> forall n' m', ltyped n' m' l -> n=n' /\ m=m' \/ n=m /\ n'=m'.


the encoding preserve types
    Lemma typed_to_MLL: forall u n m, typed n m u -> MLL.typed s t n m (to_MLL u).

    Lemma ltyped_to_MLL: forall l n m, ltyped n m l -> MLL.ltyped s t m n (lto_MLL l).

    Lemma to_MLL_typed: forall u n m, MLL.typed s t n m (to_MLL u) -> typed n m u.

    Lemma to_MLL_ltyped: forall l n m, MLL.ltyped s t n m (lto_MLL l) -> ltyped m n l.

sequent proof system for residuated monoids
    Inductive leq: I -> I -> list T -> T -> Prop :=
    | leq_var: forall i, leq (s i) (t i) [var i] (var i)
    | one_intro: forall n, leq n n [] 1
    | one_elim: forall n m l l' u, leq n m (l++l') u -> leq n m (l++1::l') u
    | dot_intro: forall n m p l l' u u', leq n m l u -> leq m p l' u' -> leq n p (l++l') (u * u')
    | dot_elim: forall n m l v w l' u, leq n m (l++v::w::l') u -> leq n m (l++(v * w)::l') u
    | rdv_intro: forall n m p u v l, typed p m v -> leq n m (l++[v]) u -> leq n p l (u / v)
    | rdv_elim: forall n m p q l k v w l' u, ltyped m q l' ->
      leq n m k v -> leq p q (l++w::l') u -> leq p q (l++(w / v)::k++l') u
    | ldv_intro: forall n m p u v l, typed n p v -> leq n m (v::l) u -> leq p m l (v \ u)
    | ldv_elim: forall n m p q l k v w l' u, ltyped p m l ->
      leq m n k v -> leq p q (l++w::l') u -> leq p q (l++k++(v \ w)::l') u.

sanity check: derivable sequents are correctly typed
    Lemma leq_typed: forall l u n m, leq n m l u -> ltyped n m l /\ typed n m u.


"one output, several input" cyclic MLL derivable sequents yield derivable IMLL sequents (we start from an untyped sequent for commodity, so that we do not have to bother about types when applying induction hypotheses)
    Theorem uMLL_to_IMLL: forall n m l u, ltyped n m l -> typed n m u ->
      useq (to_MLL u::lto_MLL l) -> leq n m l u.

  End types.

untyped means typed in the trivial environment ; uleq mean derivable in the untyped setting ;
  Notation untyped u := (typed ttt ttt _ _ u).
  Notation uleq := (leq ttt ttt tt tt).

  Lemma always_untyped: forall u, typed ttt ttt tt tt u.

  Lemma always_luntyped: forall l, ltyped ttt ttt tt tt l.



non commutative IMLL derivable sequents yield cyclic MLL derivable sequents ; it suffices to prove it for the untyped setting
  Theorem uIMLL_to_uMLL: forall l u, uleq l u -> useq (to_MLL u::lto_MLL l).

  Section erase.

    Variable I: Set.
    Variables s t: X -> I.


    Notation ltyped := (ltyped s t).
    Notation typed := (typed s t).
    Notation leq := (leq s t).

untyping theorem for residuated monoids (non-commutative IMLL)
    Theorem untype: forall l u, uleq l u -> forall n m, ltyped n m l -> typed n m u -> leq n m l u.

typed derivable sequents are untyped derivable (straightforward)
    Lemma erase: forall l u n m, leq n m l u -> uleq l u.

typed conversions between IMLL and MLL
    Theorem IMLL_to_MLL: forall l u n m, leq n m l u -> seq s t n (to_MLL u::lto_MLL l).
    Theorem MLL_to_IMLL: forall l u n m, ltyped n m l -> typed n m u -> seq s t n (to_MLL u::lto_MLL l) -> leq n m l u.

  End erase.

End IMLL.

This page has been generated by coqdoc