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Random Transitions in Turbulence
A huge number of turbulent flows have a bistable or multistable behavior

VKS experiment Earth Kuroshio current

Other examples :
Turbulent convection, Van Karman and Couette turbulence.
Multistability in the atmosphere, weather regimes, and so on.
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The 2D Stochastic-Navier-Stokes (SNS) Equations

The simplest model for two dimensional turbulence.
Navier Stokes equation with a random force

∂ω

∂ t
+u.∇ω = ν∆ω−αω +

√
σ fs (1)

where ω = (∇∧u) .ez is the vorticity, fs is a random force, α is the
Rayleigh friction coefficient.
An academic model with experimental realizations (Sommeria,
Tabeling, Ecke experiments, rotating tanks, magnetic flows,
soap films, and so on). Analogies with geophysical flows.
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Freidlin–Wentzell theory or Onsager Machlup Formalism
Classical Large Deviations for SDE or SPDE

dx = f (x)dt +
√

νdW

Hypothesis: the deterministic dynamics has isolated
attractors. Large deviation results:

P(X )∼ exp
(
−V (X )

ν

)
to mean lim

ν→0
ν logP =−V

with V (X ) = inf
t>0

inf
{x(t)|x(0)∈0 and x(t)=X}

L [x ]

and L [x ] =
1
2

∫ t

0
ds (ẋ− f (x))2

Because of the connected attractors, the 2D Navier–Stokes
Eq. do not fulfill this hypothesis

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Non-Equilibrium Phase Transitions and Large Deviations in
the 2D Stochastic Navier-Stokes Equations

1 Non-equilibrium phase transitions
Experiments
Random changes of flow topology in the 2D stochastic
Navier–Stokes Eq. (F. B., E. Simonnet and H. Morita)

2 Large deviations and path integrals
Introduction to path integrals and large deviations
2D turbulence attractors
Instantons for the 2D stochastic Navier–Stokes equations
(F.B. and J. Laurie)

3 Large deviations in dynamical systems with connected attractors
A toy model with connected attractors
Non classical large deviations for models with connected
attractors (F.B. and H. Touchette)
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Random transitions in real flows
Random change of flow topology (E.S., H.M. and F.B.)
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Random transitions in real flows
Random change of flow topology (E.S., H.M. and F.B.)

Non-Equilibrium Phase Transitions in Real Flows
Rotating tank experiments (Quasi Geostrophic dynamics)

Transitions between blocked and zonal states:

Y. Tian and col, J. Fluid. Mech. (2001) (groups of H. Swinney and
M. Ghil)
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Random transitions in real flows
Random change of flow topology (E.S., H.M. and F.B.)

Non-Equilibrium Phase Transitions in Real Flows
The Kuroshio current bistability (two layer Quasi-Geostrophic or primitive equations
dynamics)

See surface temperature of the pacific ocean, east of Japan

Kuroshio paths and bistability timeseries
F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Random transitions in real flows
Random change of flow topology (E.S., H.M. and F.B.)

Random Transitions in Turbulence Problems
Magnetic Field Reversal (Turbulent Dynamo, MHD Dynamics)

Magnetic field timeseries Zoom on reversal paths

(VKS experiment)

In turbulent flows, transitions from one attractor to another often
occur through a predictable path

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Random transitions in real flows
Random change of flow topology (E.S., H.M. and F.B.)

2D Stochastic Navier-Stokes Eq. and 2D Euler Steady
States

∂ω

∂ t
+u.∇ω = ν∆ω−αω +

√
2αfs (2)

Time scale separation: magenta terms are small.
At first order, the dynamics is nearly a 2D Euler dynamics.
The flow self organizes and converges towards steady solutions
of the Euler Eq.:

u.∇ω = 0 or equivalently ω = f (ψ)

where the Stream Function ψ is given by: u = ez ×∇ψ .
Steady states of the Euler equation will play a crucial role.
Degeneracy : what does select f ?
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Random transitions in real flows
Random change of flow topology (E.S., H.M. and F.B.)

Steady States of Euler Eq. as Maxima of Variational
Problems
Energy-Casimir Variational Problems

S(E ) = max
ω

{∫
D

dr s (ω)
∣∣∣1
2

∫
D

dr
v2

2
= E

}
.

Numerical results : Z. Yin, D. C. Montgomery, and H. J. H.
Clercx, Phys. Fluids (2003).

Maxima: ω = ∆ψ =
(
s
′
)−1

(βψ) (stable steady states of the
Euler Eq.).
In the following, normal form analysis with
s (ω) =−ω2

2 +a4
ω4

4 + ...

Geometry parameter g = E (λ1−λ2) ∝ (Lx −Ly ).

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Random transitions in real flows
Random change of flow topology (E.S., H.M. and F.B.)

Steady States for the 2D-Euler Eq. (doubly periodic)

Bifurcation analysis : degeneracy removal, either by the domain
geometry (g) or by the nonlinearity of the vorticity-stream function

relation (f , parameter a4).

Derivation: normal form for an Energy-Casimir variational problem.
A general degeneracy removal mechanism.

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Random transitions in real flows
Random change of flow topology (E.S., H.M. and F.B.)

Numerical Simulation of the 2D Stochastic NS Eq.

Very long relaxation times. 105 turnover times.

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Numerical Simulation of the 2D Stochastic NS Eq.

Very long relaxation times. 105 turnover times.
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Random transitions in real flows
Random change of flow topology (E.S., H.M. and F.B.)

Out of Equilibrium Stationary States: Dipoles

Are we close to some steady states of the Euler Eq.?

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Vorticity-Streamfunction Relation

Conclusion: we are close to steady states of the Euler Eq.

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Steady States for the 2D-Euler Eq. (doubly periodic)

A second order phase transition.

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Non-Equilibrium Phase Transition
The time series and PDF of the Order Parameter

Order parameter : z1 =
∫

dxdy exp(iy)ω (x ,y).

For unidirectional flows |z1| ' 0, for dipoles |z1| ' 0.6−0.7

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Random transitions in real flows
Random change of flow topology (E.S., H.M. and F.B.)

Bistability in Rotating Tank Experiments
M. Mathur, J. Sommeria (LEGI)

Bistability (hysteresis) in rotating tank experiments

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Path Integrals And Large Deviations In Non-Equilibrium
Statistical Mechanics

Aim: Entropy and free energy are extremely useful in
equilibrium statistical mechanics: they encode all the statistics
of the system. How to compute similar quantity for out of
equilibrium systems?
Answer: Large deviations for ensembles of dynamical paths =
out of equilibrium and dynamical free energies. How to
compute these?

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Kramer’s Problem: a Pedagogical Example for Bistability

Historical example: Computation by Kramer of the Arrhenius law
for a bistable mechanical system with stochastic noise

dx
dt

=−dV
dx

(x) +
√
2Dη (t) Rate : λ = Aexp

(
−∆V

RT

)
with RT ∝ 2D
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The problem was solved by Kramers (30’). Modern approach: path
integral formulation (instanton theory, physicists) or large deviation
theory (Freidlin-Wentzell, mathematicians)
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Path Integrals for ODE – Onsager Machlup (50’)

dx
dt

= f (x)+
√

2Dη(x ,t)

Path integral representation of transition probabilities:

P(x0,xT ,T )=P (x = x0,t = 0;x = xT ,t = T )=
∫ x(T )=xT

x(0)=x0
D [x]exp

(
−S [T ,x]

2D

)
with S [T ,x] =

1
2

∫ T

0
dt
{
[ẋ− f (x)]2−2Df ′(x)

}
Instanton: the most probable path with fixed boundary
conditions

S(T ,x0,xT ) = min
x(t)
{S [T ,x ] |x(0) = x0 and x(T ) = xT }

Saddle point approximation (WKB) gives large deviations results:

logP(x0,xT ,T ) ∼
D→0
−S(T ,x0,xT )

2D

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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What to Do with Path Integrals ?

Solving the equations in the saddle point approximation using
theory or numerical optimization (gradient methods)
Transition rates and transition trajectories are given by minima
and minimizers of the action
It explains why most transition trajectories concentrate close
to a single one (instanton trajectory)
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 1
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x

t
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Path Integrals And Turbulence Problems

It has never been developed before
Aim: compute extremely rare but essential events like
transitions paths between attractors and transition rates
This is unfeasible using conventional tools (direct numerical
simulation)
The main issue: Is it feasible for turbulence problems ? For
which class of models (in terms of complexity) ?
The route to follow:

1 Determine attractors
2 Study instantons between attractors

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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2D Stochastic Navier-Stokes Eq. and 2D Euler Steady
States

∂ω

∂ t
+u.∇ω = ν∆ω−αω +

√
2αfs

Time scale separation: magenta terms are small. turnover
time = 1�1/α = forcing or dissipation time.
At first order, the dynamics is nearly a 2D Euler dynamics.

∂ω

∂ t
+u.∇ω = 0

where the Stream Function ψ is given by: u = ez ×∇ψ .
Steady states of the Euler equation will play a crucial role.
Degeneracy : what does select f ?
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The Set of Attractors of the 2D Euler Equations is
Connected
A trivial consequence of the 2D Euler equation scale invariance

∂ω

∂ t
+u.∇ω = 0

If ω(x, t) is a solution of the 2D Euler Eq., then for any λ > 0,
λω(x,λ t) is also a solution (nonlinearity is homogeneous of
degree 2)
Then any steady solutions ω is connected to zero through the
path sω(st), 0≤ s ≤ 1
Any two steady states ω0 and ω1 are connected through a
continuous path Ω(s), 0≤ s ≤ 1 among the set of steady state
The set of steady states of the 2D Euler equations is connected

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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The Action of the 2D Stochastic Navier-Stokes

∂ω

∂ t
+u.∇ω = ν∆ω−αω +

√
2αfs with

〈
fs(x, t), fs(x′, t ′)

〉
= C (x−x′)δ (t− t ′)

S [T ,x ] =
1
2

∫ T

0
dt
∫

D
dxdx′ p(x,t)C (x−x′)p(x′,t)

with p =
∂ω

∂ t
+u.∇ω + αω−ν∆ω

We can compute explicitly and study the stability of many
instantons (parallel to parallel flows, spatial white noise,
Laplacian eigenmodes, etc.)
We can obtain explicit large deviation for rare flows (with
exponential tails)

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Algorithm for Action Minimization
A variational approach

We discretize action integral both in time and space (time
using the central differencing scheme, and space using
pseudo-spectral decomposition)
Fix the initial and final states throughout the minimization
Newton or quasi-Newton methods are prohibitively expensive
to implement (Hessian)
We implement a gradient method or steepest descent method:
Then iteratively minimize an initial guess (simultaneously over
space and time) in the direction of the anti-gradient:

ω
n+1 = ω

n− cn
δS(ωn)

δωn

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics



Non-equilibrium phase transitions
Large deviations

Large deviations - Connected attractors

Path integrals
2D turbulence attractors
Instantons for the 2D S Navier–Stokes Eq.

Instanton from Dipole to Parallel Flows
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Scaling of S with α shows no
large deviation

logP(ω0,ωT ,T ) ∼
α→0
−S(T ,ω0,ωT )

2α
. This is not a large number. The

stationary distribution or the transition probabilities are not
concentrated. No large deviation. No bistability
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Conclusions from Instanton Analysis

We can numerically compute instantons for simple turbulent
flows
In the inertial limit, instantons follow the connected set of
attractors. Towards an asymptotic theory?
Definition: Ck =

∫
D dxexp(ik.x)C (x). If Ck = 0 for some k,

the force is called degenerate, non-degenerate otherwise
There is no large deviations for transitions between attractors
for non-degenerate forces
No bistability for non-degenerate forces

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Degenerate Forces Prevent Bistability
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Order parameter : z1 =
∫

dxdy exp(iy)ω (x ,y).

For unidirectional flows |z1| ' 0, for dipoles |z1| ' 0.6−0.7.
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The Stochastic A-B Model
A toy model in order to illustrate averaging and large deviations in models with connected
attractors

A huge number of Hamiltonian PDEs have connected
attractors { dA

dt = −AB
dB
dt = A2

A quadratic nonlinearity. Conservation of energy

E = A2 +B2

A connected set of steady states. For any B , A = 0 is an
equilibrium

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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Phase Space of the A-B Model

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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The Stochastic A-B Model
The limit of weak forces and dissipation

{
dA = (−AB−νA)dt +

√
νσ1dW1

dB =
(
A2−νB

)
dt +
√

νσ2dW2

Stationary measure in the limit ν → ∞

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics
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√
νσ1dW1

dB =
(
A2−νB

)
dt +
√

νσ2dW2

Stationary measure in the limit ν → ∞

F. Bouchet ENSL-CNRS Kinetic theory and fluid mechanics



Non-equilibrium phase transitions
Large deviations

Large deviations - Connected attractors

The A-B model (F.B., and H.T)
Non classical large deviations (F.B., and H.T)

The Typical States of the A-B Model
Averaging in the limit of weak forces and dissipation

First step of the adiabatic treatment : understand the
evolution of the rapid variable A, for a fixed value of the slow
variable B .
At first order, for small v , A is a Ornstein–Uhlenbeck process.
dA = (−AB−νA)dt +

√
νσ1dW1. Locally Gaussian :

P(A) = C (B)exp
(
−BA2

νσ2
1

)

P(A,B) = C1 exp
(
−BA2

νσ2
1

)
B

σ2
1

σ2
2
+ 1

2 exp
(
−B2

σ2
2

)
; P(E) = C1E

σ2
1

σ2
2 exp

(
−E2

σ2
2

)

A non trivial distribution
The PDF is not concentrated. The weak forces and dissipation
do not select a single equilibrium energy E .
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The Stochastic A-B Model
The limit of weak forces and dissipation

{
dA = (−AB−νA)dt +

√
νσ1dW1

dB =
(
A2−νB

)
dt +
√

νσ2dW2

Stationary measure in the limit ν → ∞
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Outline

1 Non-equilibrium phase transitions
Experiments
Random changes of flow topology in the 2D stochastic
Navier–Stokes Eq. (F. B., E. Simonnet and H. Morita)

2 Large deviations and path integrals
Introduction to path integrals and large deviations
2D turbulence attractors
Instantons for the 2D stochastic Navier–Stokes equations
(F.B. and J. Laurie)

3 Large deviations in dynamical systems with connected attractors
A toy model with connected attractors
Non classical large deviations for models with connected
attractors (F.B. and H. Touchette)
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Classical Large Deviations
Freidlin–Wentzell theory or Onsager Machlup formalism

dx = f (x)dt +
√

νdW

Hypothesis: the deterministic dynamics has isolated attractors.
Large deviation results:

P(X )∼ exp
(
−V (X )

ν

)
to mean lim

ν→0
ν logP =−V

with V (X ) = inf
t>0

inf
{x(t)|x(0)∈0 and x(t)=X}

L [x ]

and L [x ] =
1
2

∫ t

0
ds (ẋ− f (x))2

Because of the connected attractors, the AB model does not
fulfill the hypothesis of the Freidlin–Wentzell theorems
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Non Classical Rate for the Large Deviations of the A-B
Model

Large deviation result:

P(A,B)∼ exp
(
−V (A,B)√

ν

)
to mean lim

ν→0

√
ν logP =−V

with V (A,B) = 0 if A = 0,B > 0 and V (A,B) =
2
√
2

3
(
A2 +B2)3/4 otherwise

A

B

Stable

Unstable

{s

{u
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Non Classical Large Deviations of the A-B Model
Diffusion along the connected set of unstable steady states

L [x ] =
1
2

∫ t

0
ds (ẋ− f (x))2

The action is zero for paths along the set of steady states and
along a deterministic trajectory.

-4 -2 0 2 4

-4

-2

0

2

4

A

B
Excited

Decay

Indirect

P (x = x1,t = 0;x = x2,t = T ) =
∫ x(T )=x2

x(0)=x1
D [x ]exp

(
− 1
2ν

L [x ]

)
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Non Classical Large Deviations of the A-B Model
Diffusion along the connected set of unstable steady states

lim
ν→0

√
ν logP(A,B) =−V

with V (A,B) = 0 if A = 0,B > 0 and V (A,B) =
2
√
2

3
(
A2 +B2)3/4 otherwise
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Summary

Messages :
We predict and observe non-equilibrium phase transitions for
the 2D-Stochastic Navier Stokes equations
We can compute numerically instantons for turbulent flows
In systems with connected attractors, large scale forces prevent
bistability
Non classical large deviation rate for dynamical systems with
connected attractors

F. Bouchet, and A. Venaille, Physics Reports, 2011, Statistical mechanics of
two-dimensional and geophysical flows
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