On Upper-Confidence Bound Policies for Non-stationary Bandit Problems

Edition Number: 
22
Date: 
October, 2011
Place: 
Espoo, Finland
PageStart: 
174
PageEnd: 
188
Abstract: 

Many problems, such as cognitive radio, parameter control of a scanning tunnelling microscope or internet advertisement, can be modelled as non-stationary bandit problems where the distributions of rewards changes abruptly at unknown time instants. In this paper, we analyze two algorithms designed for solving this issue: discounted UCB (D-UCB) and sliding-window UCB (SW-UCB). We establish an upper-bound for the expected regret by upper-bounding the expectation of the number of times suboptimal arms are played. The proof relies on an interesting Hoeffding type inequality for self normalized deviations with a random number of summands. We establish a lower-bound for the regret in presence of abrupt changes in the arms reward distributions. We show that the discounted UCB and the sliding-window UCB both match the lower-bound up to a logarithmic factor. Numerical simulations show that D-UCB and SW-UCB perform significantly better than existing soft-max methods like EXP3.S.

Arxiv Number: 
0805.3415
Hal Number: 
00281392