Abstract:
We address the issue of order identification for hidden Markov models with Poisson and Gaussian emissions. We prove information-theoretic BIC-like mixture inequalities in the spirit of Finesso [1991. Consistent estimation of the order for Markov and hidden Markov chains. Ph.D. Thesis, University of Maryland]; Liu and Narayan [1994. Order estimation and sequential universal data compression of a hidden Markov source by the method of mixtures. Canad. J. Statist. 30(4), 573–589]; Gassiat and Boucheron [2003. Optimal error exponents in hidden Markov models order estimation. IEEE Trans. Inform. Theory 49(4), 964–980]. These inequalities lead to consistent penalized estimators that need no prior bound on the order. A simulation study and an application to postural analysis in humans are provided.