Library GraphTheory.setoid_bigop

Require Import RelationClasses Morphisms Relation_Definitions.
From mathcomp Require Import all_ssreflect.

Set Implicit Arguments.
Unset Strict Implicit.

Bigops over Setoids

This file generalizes various lemmas from mathcomp.ssreflect.bigop to the setting where monoid laws only hold up to the equivalence of some setoid.

setoids


From HB Require Import structures.

HB.mixin Record Setoid_of_Type A :=
  { eqv : relation A; Eqv : Equivalence eqv }.

HB.structure Definition Setoid := { A of Setoid_of_Type A }.
Notation setoid := Setoid.type.

Declare Scope setoid_scope.
Open Scope setoid_scope.
Infix "≡" := eqv (at level 79) : setoid_scope.
Notation "x ≡ y :> X" := ((x : X) (y : X))
  (at level 79, y at next level, only parsing) : setoid_scope.
Global Existing Instance Eqv.

Definition flat (A : Type) := A.
Definition flat_setoid_mixin (A : Type) :=
  Setoid_of_Type.Build A (@eq_equivalence A).
Section A.

TODO: Remove the section wrapper once HB supports this
Variable (A : Type).
HB.instance (flat A) (flat_setoid_mixin A).
End A.
HB.instance unit (flat_setoid_mixin unit).

Lemma eqvxx (X : setoid) (x : X) : x x. reflexivity. Qed.
Arguments eqvxx {X x}.

This allows trivia (and hence done) to solve x x.
Hint Extern 0 ⇒ reflexivity : core.

Class monoidLaws {X : setoid} (mon0 : X) (mon2 : X X X) :=
  MonoidLaws {
      mon_eqv: Proper (eqv ==> eqv ==> eqv) mon2;
      monA: x y z, mon2 x (mon2 y z) mon2 (mon2 x y) z;
      monU: x, mon2 x mon0 x;
      monUl: x, mon2 mon0 x x
    }.
Global Existing Instance mon_eqv.

Class comMonoidLaws {X:setoid} (mon0 : X) (mon2 : X X X) :=
  ComMonoidLaws {
      mon_of_com :> monoidLaws mon0 mon2;
      monC : x y, mon2 x y mon2 y x
    }.

Section SetoidTheory.
Variables (X : setoid) (mon0 : X) (mon2 : X X X).
Local Notation "1" := mon0.
Local Notation "*%M" := mon2 (at level 0).
Notation "x ⊗ y" := (mon2 x y) (left associativity, at level 25).

Lemma monUl_of_com :
  ( x, mon2 x mon0 x) ( x y, mon2 x y mon2 y x) x, mon2 mon0 x x.
Proof. movemonU monC x. by rewrite monC monU. Qed.

Definition mkComMonoidLaws
  (mon_eqv: Proper (eqv ==> eqv ==> eqv) mon2)
  (monA: x y z, mon2 x (mon2 y z) mon2 (mon2 x y) z)
  (monC : x y, mon2 x y mon2 y x)
  (monU: x, mon2 x mon0 x) :=
  ComMonoidLaws (MonoidLaws mon_eqv monA monU (monUl_of_com monU monC)) monC.

Section MonoidTheory.
Context {X_monoid : monoidLaws mon0 mon2}.

Lemma eqv_bigr (I : Type) (r : seq I) (P : pred I) (F1 F2 : I X) :
    ( i : I, P i F1 i F2 i) \big[*%M/1]_(i <- r | P i) F1 i \big[*%M/1]_(i <- r | P i) F2 i.
Proof. elim/big_rec2 : _ ⇒ // i x y Pi H1 H2. by rewrite H2 ?H1. Qed.

Lemma eqv_bigl I r (P1 P2 : pred I) (F : I X) :
  P1 =1 P2
  \big[*%M/1]_(i <- r | P1 i) F i \big[*%M/1]_(i <- r | P2 i) F i.
Proof. by moveeqP12; rewrite -!(big_filter r) (eq_filter eqP12). Qed.

Lemma eqv_big I (r:seq I) (P1 P2 : pred I) (F1 F2 : I X) :
  P1 =1 P2 ( i, P1 i F1 i F2 i)
  \big[*%M/1]_(i <- r | P1 i) F1 i \big[*%M/1]_(i <- r | P2 i) F2 i.
Proof. by move/eqv_bigl <-; move/eqv_bigr→. Qed.

Lemma big_mkcond (I : eqType) (r : seq I) (P : pred I) (F : I X) :
  \big[*%M/1]_(i <- r | P i) F i \big[*%M/1]_(i <- r) (if P i then F i else 1).
Proof. rewrite unlock. elim: r ⇒ //= i r H. by case P; rewrite H ?monUl. Qed.

Lemma big_cat (I : eqType) (r1 r2 : seq I) (P : pred I) (F : I X) :
      \big[*%M/1]_(i <- (r1 ++ r2) | P i) F i
      (\big[*%M/1]_(i <- r1 | P i) F i) (\big[*%M/1]_(i <- r2 | P i) F i).
Proof.
rewrite !(big_mkcond _ P). elim: r1 ⇒ /= [|i r1 IH]; first by rewrite big_nil monUl.
by rewrite !big_cons IH monA.
Qed.

Lemma big_seq1 (I : Type) (i : I) (F : I X) : \big[*%M/1]_(j <- [:: i]) F j F i.
Proof. by rewrite big_cons big_nil monU. Qed.

Lemma big_pred1_eq (I : finType) (i : I) (F : I X) :
  \big[*%M/1]_(j | j == i) F j F i.
Proof.
  rewrite -big_filter filter_pred1_uniq //; first by rewrite big_seq1.
  solve [by rewrite /index_enum -?enumT ?enum_uniq
        |exact: index_enum_uniq]. Qed.

Lemma big_pred1 (I : finType) i (P : pred I) (F : I X) :
  P =1 pred1 i \big[*%M/1]_(j | P j) F j F i.
Proof. move/(eq_bigl _ _)->; apply: big_pred1_eq. Qed.

Lemma eqv_map (I1 I2 : finType) (r1 : seq I1) (P1 : pred I1) (P2 : pred I2)
  (f : I1 I2) (F1 : I1 X) (F2 : I2 X) :
   ( x, P1 x = P2 (f x)) ( i : I1, P1 i F1 i F2 (f i))
   \big[*%M/1]_(i <- r1 | P1 i) F1 i \big[*%M/1]_(i <- map f r1 | P2 i) F2 i.
Proof.
  moveHP HF. elim r1 ⇒ [|k r2 IH]; first by rewrite !big_nil.
  rewrite /= !big_cons -HP. case: (boolP (P1 k)) ⇒ [Pk|_]; by rewrite -?HF ?IH.
Qed.

End MonoidTheory.

Section ComMonoidTheory.
Context {X_comMonoid : comMonoidLaws mon0 mon2}.

Local Notation "1" := mon0.
Local Notation "*%M" := mon2 (at level 0).
Notation "x ⊗ y" := (mon2 x y) (left associativity, at level 25).

Lemma big_split I r (P : pred I) (F1 F2 : I X) :
  \big[*%M/1]_(i <- r | P i) (F1 i F2 i)
  (\big[*%M/1]_(i <- r | P i) F1 i) \big[*%M/1]_(i <- r | P i) F2 i.
Proof.
  elim/big_rec3 : _ ⇒ [|i x y z Pi ->]; rewrite ?monU //.
  rewrite -!monA. apply: mon_eqv ⇒ //. by rewrite monA [_ y]monC monA.
Qed.

Lemma perm_big (I : eqType) r1 r2 (P : pred I) (F : I X) :
  perm_eq r1 r2
  \big[*%M/1]_(i <- r1 | P i) F i \big[*%M/1]_(i <- r2 | P i) F i.
Proof.
move/permP; rewrite !(big_mkcond _ P).
elim: r1 r2 ⇒ [|i r1 IHr1] r2 eq_r12.
  by case: r2 eq_r12 ⇒ // i r2; move/(_ (pred1 i)); rewrite /= eqxx.
have r2i: i \in r2 by rewrite -has_pred1 has_count -eq_r12 /= eqxx.
case/splitPr: r2 / r2i ⇒ [r3 r4] in eq_r12 ×. rewrite big_cat /= !big_cons.
rewrite monA [_ if _ then _ else _]monC -monA. rewrite -big_cat.
rewrite (IHr1 (r3 ++ r4)) //. movea. move/(_ a) : eq_r12.
rewrite !count_cat /= addnCA. apply: addnI.
Qed.

Lemma bigID (I:eqType) r (a P : pred I) (F : I X) :
  \big[*%M/1]_(i <- r | P i) F i
  (\big[*%M/1]_(i <- r | P i && a i) F i) \big[*%M/1]_(i <- r | P i && ~~ a i) F i.
Proof.
  rewrite !(@big_mkcond _ I r _ F) -big_split.
  apply: eqv_bigri; case: (a i); by rewrite /= ?andbT ?andbF ?monU ?monUl.
Qed.
Arguments bigID [I r] a P F.

Lemma bigD1 (I : finType) j (P : pred I) (F : I X) :
  P j \big[*%M/1]_(i | P i) F i F j \big[*%M/1]_(i | P i && (i != j)) F i.
Proof.
  movePj; rewrite (bigID (pred1 j)); apply mon_eqv ⇒ //.
  apply: big_pred1i /=. by rewrite /= andbC; case: eqP ⇒ // →.
Qed.
Arguments bigD1 [I] j [P F].

Lemma reindex_onto (I J : finType) (h : J I) h' (P : pred I) (F : I X) :
   ( i, P i h (h' i) = i)
  \big[*%M/1]_(i | P i) F i
  \big[*%M/1]_(j | P (h j) && (h' (h j) == j)) F (h j).
Proof.
moveh'K; elim: {P}_.+1 {-3}P h'K (ltnSn #|P|) ⇒ //= n IHn P h'K.
case: (pickP P) ⇒ [i Pi | P0 _]; last first.
  by rewrite !big_pred0 // ⇒ j; rewrite P0.
rewrite ltnS (cardD1x Pi); move/IHn {n IHn} ⇒ IH.
rewrite (bigD1 i Pi) (bigD1 (h' i)) h'K ?Pi ?eq_refl //=. apply: mon_eqv ⇒ //.
rewrite {}IH ⇒ [|j]; [apply: eqv_biglj | by case/andP; auto].
rewrite andbC -andbA (andbCA (P _)); case: eqP ⇒ //= hK; congr (_ && ~~ _).
by apply/eqP/eqP⇒ [<-|->] //; rewrite h'K.
Qed.
Arguments reindex_onto [I J] h h' [P F].

Lemma reindex (I J : finType) (h : J I) (P : pred I) (F : I X) :
    {on [pred i | P i], bijective h}
  \big[*%M/1]_(i | P i) F i \big[*%M/1]_(j | P (h j)) F (h j).
Proof.
caseh' hK h'K; rewrite (reindex_onto h h' h'K).
by apply eqv_biglj; rewrite !inE; case Pi: (P _); rewrite //= hK ?eqxx.
Qed.
Arguments reindex [I J] h P F.

Lemma partition_big (I J : finType) (P : pred I) p (Q : pred J) (F : I X) :
    ( i, P i Q (p i))
      \big[*%M/1]_(i | P i) F i
         \big[*%M/1]_(j | Q j) \big[*%M/1]_(i | P i && (p i == j)) F i.
Proof.
moveQp; transitivity (\big[*%M/1]_(i | P i && Q (p i)) F i).
  by apply: eqv_bigli; case Pi: (P i); rewrite // Qp.
elim: {Q Qp}_.+1 {-2}Q (ltnSn #|Q|) ⇒ // n IHn Q.
case: (pickP Q) ⇒ [j Qj | Q0 _]; last first.
  by rewrite !big_pred0 // ⇒ i; rewrite Q0 andbF.
rewrite ltnS (cardD1x Qj) (bigD1 j) //; move/IHn⇒ {n IHn} <-.
rewrite (bigID (fun ip i == j)) ⇒ /=. apply: mon_eqv; apply: eqv_bigli.
  case: eqP ⇒ [-> | _] ; by rewrite ?(Qj) ?andbT ?andbF.
by rewrite andbA.
Qed.

Lemma big_sumType (I1 I2 : finType) (P : pred (I1 + I2)) (F : (I1 + I2) X) :
  \big[*%M/1]_(x | P x) F x
  (\big[*%M/1]_(x | P (inl x)) F (inl x)) (\big[*%M/1]_(x | P (inr x)) F (inr x)).
Proof. by rewrite ![index_enum _]unlock [@Finite.enum in X in X _]unlock big_cat !big_map. Qed.
Arguments big_sumType [I1 I2] P F.

Lemma big_unitType (P : pred unit) (F : unit X) :
  \big[*%M/1]_(x | P x) F x if P tt then F tt else 1.
Proof. by rewrite ![index_enum _]unlock [@Finite.enum]unlock big_mkcond big_seq1. Qed.

in conjunction with bij_perm_enum
Lemma eqv_big_bij (I1 I2 : finType) (f : I1 I2)
   (r1 : seq I1) (r2 : seq I2) (P1 : pred I1) (P2 : pred I2) (F1 : I1 X) (F2 : I2 X) :
   perm_eq r2 (map f r1) ( x, P1 x = P2 (f x)) ( i : I1, P1 i F1 i F2 (f i))
   \big[*%M/1]_(i <- r1 | P1 i) F1 i \big[*%M/1]_(i <- r2 | P2 i) F2 i.
Proof. movepr HP HF. rewrite (perm_big _ _ pr). exact: eqv_map. Qed.

Lemma big_inj2_eq (I1 I2 : finType) (F : I1 X) (f : I1 I2) (y : I1) :
  injective f \big[*%M/mon0]_(x | f x == f y) F x F y.
Proof. moveinj_f; rewrite (@big_pred1 _ _ y) //= ⇒ x; exact: inj_eq. Qed.

End ComMonoidTheory.
End SetoidTheory.

Arguments reindex_onto [X mon0 mon2 _ I J] h h' [P F].
Arguments reindex [X mon0 mon2 _ I J] h [P F].
Arguments bigD1 [X mon0 mon2 _ I] j [P F].
Arguments partition_big [X mon0 mon2 _ I J P] p Q [F].
Arguments big_pred1 [X mon0 mon2 _ I] i P F.