Require Import Morphisms RelationClasses.
Require CMorphisms CRelationClasses. (* To be used explicitly *)
From mathcomp Require Import all_ssreflect.
Require Import edone finite_quotient preliminaries bij equiv digraph.
Require Export structures.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Set Bullet Behavior "Strict Subproofs".

Directed Labeled Multigraphs

labeled directed multigraphs and their operations


(* the notion of multigraph defined here allows labels on vertices and edge-fliping isomorphisms 
   we can recover multigraphs without vertex-labels and non-flipping isomophisms using the flat_labels structure
 *)


Section s.

Variable L: labels.
Notation Lv := (lv L).
Notation Le := (le L).
Local Open Scope labels.

(* labelled directed multigraphs (not pointed, Definition 4.4) *)
Set Primitive Projections.
Record graph: Type :=
  Graph {
      vertex:> finType;
      edge: finType;
      endpoint: bool -> edge -> vertex; (* source and target functions *)
      vlabel: vertex -> Lv;
      elabel: edge -> Le }.
Unset Primitive Projections.
Notation source := (endpoint false).
Notation target := (endpoint true).
(* note: 
   - we need everything to be finite to get a terminating rewrite system
   - elsewhere we don't care that the edge type is a finType, it could certainly just be a Type
   - the vertex type has to be an eqType at various places since we regularly compare vertices (e.g., add_vlabel)
   - the vertex type has to be a finType for the merge operation, but only in order to express the new vertex labeling function... we could imagine a finitary_merge operation that would not impose this restriction
   - the vertex type has to be finite also when we go to open graphs (although maybe countable would suffice)
 *)


Basic Operations


(* empty graph *)
Definition void_graph := Graph (fun _ => vfun) vfun vfun.

(* graph with a single vertex *)
Definition unit_graph a := Graph (fun _ => vfun) (fun _: unit => a) vfun.

(* adding an edge to a graph *)
Definition add_edge (G: graph) (x y: G) (u: Le): graph :=
  @Graph (vertex G) (option_finType (edge G))
         (fun b e => match e with Some e => endpoint b e | None => if b then y else x end)
         (@vlabel G)
         (fun e => match e with Some e => elabel e | None => u end).
Notation "G ∔ [ x , u , y ]" := (@add_edge G x y u) (at level 20, left associativity).

(* adding a label to a vertex (cumulative w.r.t existing label) *)
Definition add_vlabel (G: graph) (x: G) (a: Lv): graph :=
  @Graph (vertex G) (edge G)
         (@endpoint G)
         (fun v => if v==x then avlabel v else vlabel v)
         (@elabel G).
Notation "G [tst x <- a ]" := (@add_vlabel G x a) (at level 20, left associativity).

Disjoint Union and Quotients of graphs


(* disjoint union (Definition 4.5)*)
Definition union (F G : graph) : graph :=
  {| vertex := sum_finType F G;
     edge := sum_finType (edge F) (edge G);
     endpoint b := sumf (@endpoint F b) (@endpoint G b);
     vlabel e := match e with inl e => vlabel e | inr e => vlabel e end;
     elabel e := match e with inl e => elabel e | inr e => elabel e end;
  |}.

Infix "⊎" := union (at level 50, left associativity).

Definition unl {G H: graph} (x: G): G H := inl x.
Definition unr {G H: graph} (x: H): G H := inr x.

(* quotient (Definition 4.6): merging vertices according to an equivalence relation *)
Definition merge (G: graph) (r : equiv_rel G) :=
  {| vertex := quot r;
     edge := edge G;
     endpoint b e := \pi (endpoint b e);
     vlabel c := \big[mon2/mon0]_(w | \pi w == c) vlabel w;
     elabel e := elabel e |}.
Arguments merge _ _: clear implicits.
Notation merge_seq G l := (merge G (eqv_clot l)).

(* derived operations (Definition 4.7) *)
Definition two_graph a b := unit_graph a unit_graph b.
Definition edge_graph a u b := two_graph a b [inl tt, u, inr tt].
Definition add_vertex G a := G unit_graph a.
Notation "G ∔ a" := (add_vertex G a) (at level 20, left associativity).

Homomorphisms


(* Definition 4.8  *)
Class is_hom (F G: graph) (hv: F -> G) (he: edge F -> edge G) (hd: edge F -> bool): Prop := Hom
  { endpoint_hom: forall e b, endpoint b (he e) = hv (endpoint (hd e (+) b) e);
    vlabel_hom: forall v, vlabel (hv v) vlabel v;
    elabel_hom: forall e, elabel (he e) ≡[hd e] elabel e;
  }.
(* note: 
   - when using flat_labels for L, the edge swapping funcion hd 
     may only be constantly false
   - when the edge swapping function hd is constantly false, the
     types of endpoint_hom and elabel_hom in the above definition
     simplify to the simple, non swapping, notion of homomorphism *)

(* TOTHINK: actually, vlabel_hom should use a bigop, like in lemma merge_surj
   -> would be a more natural notion of homomorphism
   -> we would have the equivalence with the current definition when hv is injective (and thus, for isomorphisms)
   -> lemma merge_surj would just asssume a homormophism which is vertex surjective and edge bijective
   (not done for now since we do not really use general homomorphisms, only isomorphisms) *)


Lemma hom_id G: @is_hom G G id id xpred0.
Proof. by split. Qed.

Lemma hom_comp F G H hv he hd kv ke kd :
  @is_hom F G hv he hd -> @is_hom G H kv ke kd -> is_hom (kv \o hv) (ke \o he) (fun e => hd e (+) kd (he e)).
Proof.
  intros E E'. split.
  move=>e b=>/=. by rewrite 2!endpoint_hom addbA.
  move=>x/=. by rewrite 2!vlabel_hom.
  move=>e/=.
  generalize (@elabel_hom _ _ _ _ _ E e).
  generalize (@elabel_hom _ _ _ _ _ E' (he e)).
  case (hd e); case (kd (he e)); simpl.
  - apply eqv11.
  - apply eqv01.
  - apply eqv10.
  - apply transitivity.
Qed.

Lemma hom_sym (F G: graph) (hv: bij F G) (he: bij (edge F) (edge G)) hd:
  is_hom hv he hd ->
  is_hom hv^-1 he^-1 (hd \o he^-1).
Proof.
  intro H. split.
  move=>e b=>/=. by rewrite -{3}(bijK' he e) endpoint_hom bijK addbA addbb.
  move=>x/=. by rewrite -{2}(bijK' hv x) vlabel_hom.
  move=>e/=. generalize (@elabel_hom _ _ _ _ _ H (he^-1 e)). rewrite -{3}(bijK' he e) bijK'. by symmetry.
Qed.

Isomorphisms


(* Definition 4.8 *)
Universe S.
Set Primitive Projections.
Record iso (F G: graph): Type@{S} :=
  Iso { iso_v:> bij F G;
        iso_e: bij (edge F) (edge G);
        iso_d: edge F -> bool;
        iso_hom: is_hom iso_v iso_e iso_d }.
Infix "≃" := iso (at level 79).
Notation "h '.e'" := (iso_e h) (at level 2, left associativity, format "h '.e'").
Notation "h '.d'" := (iso_d h) (at level 2, left associativity, format "h '.d'").
Global Existing Instance iso_hom.

Lemma endpoint_iso F G (h: iso F G) b e: endpoint b (h.e e) = h (endpoint (h.d e (+) b) e).
Proof. apply endpoint_hom. Qed.

Lemma vlabel_iso F G (h: iso F G) v: vlabel (h v) vlabel v.
Proof. apply vlabel_hom. Qed.

Lemma elabel_iso F G (h: iso F G) e: elabel (h.e e) ≡[h.d e] elabel e.
Proof. apply elabel_hom. Qed.

Definition iso_id {G}: G G := @Iso _ _ bij_id bij_id _ (hom_id G).
Hint Resolve iso_id : core. (* so that by gets it... *)

Definition iso_sym F G: F G -> G F.
Proof.
  move => f.
  eapply Iso with (bij_sym f) (bij_sym f.e) _ =>/=.
  apply hom_sym, f.
Defined.

Definition iso_comp F G H: F G -> G H -> F H.
Proof.
  move => f g.
  eapply Iso with (bij_comp f g) (bij_comp f.e g.e) _=>/=.
  apply hom_comp. apply f. apply g.
Defined.

(* Fact 4.9 *)
Global Instance iso_Equivalence: CEquivalence iso.
Proof. constructor. exact @iso_id. exact @iso_sym. exact @iso_comp. Defined.

Lemma endpoint_iso' F G (h: iso F G) b e: endpoint b (h.e^-1 e) = h^-1 (endpoint (h.d (h.e^-1 e) (+) b) e).
Proof. apply (endpoint_iso (iso_sym h)). Qed.

Lemma vlabel_iso' F G (h: iso F G) v: vlabel (h^-1 v) vlabel v.
Proof. apply (vlabel_iso (iso_sym h)). Qed.

Lemma elabel_iso' F G (h: iso F G) e: elabel (h.e^-1 e) ≡[h.d (h.e^-1 e)] elabel e.
Proof. apply (elabel_iso (iso_sym h)). Qed.

Definition Iso' (F G: graph)
           (fv: F -> G) (fv': G -> F)
           (fe: edge F -> edge G) (fe': edge G -> edge F) fd:
  cancel fv fv' -> cancel fv' fv ->
  cancel fe fe' -> cancel fe' fe ->
  is_hom fv fe fd -> F G.
Proof. move=> fv1 fv2 fe1 fe2 E. exists (Bij fv1 fv2) (Bij fe1 fe2) fd. apply E. Defined.

Tactic Notation "Iso" uconstr(f) uconstr(g) uconstr(h) :=
  match goal with |- ?F ?G => apply (@Iso F G f g h) end.

isomorphisms about local and global operations


(* Lemmas 4.10, 4.11, 4.12 and more *)

isomorphisms about unit_graph


Global Instance unit_graph_iso: CProper (eqv ==> iso) unit_graph.
Proof.
  intros a b ab. Iso bij_id bij_id xpred0.
  abstract by split=>//=;symmetry.
Defined.

isomorphisms about add_edge


Lemma add_edge_iso'' F G (h: F G) x x' (ex: h x = x') y y' (ey: h y = y') u v (e: u v):
  F [x, u, y] G [x', v, y'].
Proof.
  Iso (iso_v h) (option_bij (h.e)) (fun e => match e with Some e => h.d e | None => false end).
  abstract by split; rewrite -?ex -?ey; repeat first [apply h|symmetry; apply e|case].
Defined.

Lemma add_edge_iso' F G (h: F G) x u v y (e: u v): F [x, u, y] G [h x, v, h y].
Proof. by eapply add_edge_iso''. Defined.

Lemma add_edge_iso F G (h: F G) x u y: F [x, u, y] G [h x, u, h y].
Proof. by apply add_edge_iso'. Defined.

Lemma add_edge_C F x u y z v t: F [x, u, y] [z, v, t] F [z, v, t] [x, u, y].
Proof.
  Iso bij_id option2_swap xpred0.
  abstract by split; repeat case.
Defined.

Lemma add_edge_rev F x u v y (e: u ≡' v): F [x, u, y] F [y, v, x].
Proof.
  Iso bij_id bij_id (fun x => match x with Some _ => false | None => true end).
  abstract (split; (repeat case)=>//=; by apply Eqv'_sym).
Defined.

Lemma add_edge_vlabel F x a y u z: F [tst x <- a] [y, u, z] F [y, u, z] [tst x <- a].
Proof. reflexivity. Defined.

Lemma add_vlabel_iso'' F G (h: F G) x x' (ex: h x = x') a b (e: a b): F [tst x <- a] G [tst x' <- b].
Proof.
  Iso h h.e h.d.
  split; try apply h.
  move=>v/=. rewrite -ex inj_eq=>/=. 2: by apply bij_injective.
  by case eq_op; rewrite ?e vlabel_iso.
Defined.

Lemma add_vlabel_iso' F G (h: F G) x a b (e: a b): F [tst x <- a] G [tst h x <- b].
Proof. by eapply add_vlabel_iso''. Defined.

Lemma add_vlabel_iso F G (h: F G) x a: F [tst x <- a] G [tst h x <- a].
Proof. by apply add_vlabel_iso'. Defined.

Lemma add_vlabel_C F x a y b: F [tst x <- a] [tst y <- b] F [tst y <- b] [tst x <- a].
Proof.
  Iso bij_id bij_id xpred0.
  split=>//=. move=>v.
  case eq_op; case eq_op=>//.
  by rewrite 2!monA (monC a b).
Defined.

Lemma add_vlabel_unit a x b: unit_graph a [tst x <- b] unit_graph (ab).
Proof. apply (unit_graph_iso (monC b a)). Defined.

Lemma add_vlabel_mon0 G x: G [tst x <- 1] G.
Proof.
  Iso bij_id bij_id xpred0.
  split=>//=. move=>v.
  case eq_op=>//. by rewrite monC monU.
Defined.

isomorphisms about union


Global Instance union_iso: CProper (iso ==> iso ==> iso) union.
Proof.
  intros F F' f G G' g.
  exists (sum_bij f g) (sum_bij f.e g.e) (fun e => match e with inl e => f.d e | inr e => g.d e end).
  abstract (split; [
              move=>[e|e] b/=; by rewrite endpoint_iso |
              case=>x/=; apply vlabel_iso |
              case=>e/=; apply elabel_iso ]).
Defined.

Lemma union_C G H: G H H G.
Proof.
  exists bij_sumC bij_sumC xpred0.
  abstract by split; case.
Defined.

Lemma union_A F G H: F (G H) F G H.
Proof.
  exists bij_sumA bij_sumA xpred0.
  abstract by split; repeat case.
Defined.

Lemma union_add_edge_l F G x u y: F [x, u, y] G (F G) [unl x, u, unl y].
Proof.
  Iso bij_id (@sum_option_l _ _) xpred0.
  abstract by split; repeat case.
Defined.

Lemma union_add_edge_r F G x u y: F G [x, u, y] (F G) [unr x, u, unr y].
Proof.
  etransitivity. apply union_C.
  etransitivity. apply union_add_edge_l.
  etransitivity. apply (add_edge_iso (union_C _ _)).
  reflexivity.
Defined.

Lemma union_add_vlabel_l F G x a: F [tst x <- a] G (F G) [tst unl x <- a].
Proof.
  Iso bij_id bij_id xpred0.
  abstract by split; repeat case.
Defined.

Lemma union_add_vlabel_r F G x a: F G [tst x <- a] (F G) [tst unr x <- a].
Proof.
  etransitivity. apply union_C.
  etransitivity. apply union_add_vlabel_l.
  etransitivity. apply (add_vlabel_iso (union_C _ _)).
  reflexivity.
Defined.

Lemma add_vlabel_two a b (x: unit+unit) c:
  two_graph a b [tst x <- c] two_graph (if x then ac else a) (if x then b else bc).
Proof.
  case x; case=>/=.
  etransitivity. apply iso_sym. apply union_add_vlabel_l. apply union_iso=>//. apply add_vlabel_unit.
  etransitivity. apply iso_sym. apply union_add_vlabel_r. apply union_iso=>//. apply add_vlabel_unit.
Defined.

Lemma add_vlabel_edge a u b (x: unit+unit) c:
  edge_graph a u b [tst x <- c] edge_graph (if x then ac else a) u (if x then b else bc).
Proof.
  etransitivity. apply iso_sym. apply add_edge_vlabel.
  etransitivity. apply (add_edge_iso (add_vlabel_two a b x c)).
  by case x; case.
Defined.

isomorphisms about merge


(* remove if no longer used below *)
Lemma eq_eqv {X: setoid} (x y: X): x = y -> x y.
Proof. by move=>->. Qed.

Section merge_surj.
 Variable (G: graph) (r: equiv_rel G).
 Variable (H: graph) (fv: G -> H) (fv': H -> G).
 Variable (fe: bij (edge G) (edge H)).
 Hypothesis Hr: forall x y, reflect (kernel fv x y) (r x y).
 Hypothesis Hsurj: cancel fv' fv.
 Hypothesis Hendpoints: forall b e, fv (endpoint b e) = endpoint b (fe e).
 Hypothesis Helabel: forall e, elabel (fe e) elabel e.
 Hypothesis Hvlabel: forall y, vlabel y \big[mon2/mon0]_(x | fv x == y) vlabel x.

 (* Lemma 4.13 *)
 Lemma merge_surj: merge G r H.
 Proof.
   Iso (quot_kernel Hr Hsurj) fe xpred0. split; intros=>/=.
   - rewrite -Hendpoints=>/=. by rewrite quot_kernelE.
   - rewrite Hvlabel.
     (* TOCLEAN *)
     apply eq_eqv, eq_bigl=>x.
     apply /idP/idP =>/eqP E.
     * apply /eqP. move:E=>/Hr/eqquotP E. rewrite E. apply reprK.
     * by rewrite -E quot_kernelE.
   - apply Helabel.
 Defined.
 Lemma merge_surjE (x: G): merge_surj (\pi x) = fv x.
 Proof. by rewrite quot_kernelE. Qed.
End merge_surj.
Global Opaque merge_surj.

Section h_merge_nothing'.
 Variables (F: graph) (r: equiv_rel F).
 Hypothesis H: forall x y: F, r x y -> x=y.
 Lemma merge_nothing': merge F r F.
 Proof.
   apply merge_surj with id id bij_id=>//.
   - intros. apply Bool.iff_reflect.
     split. intros ->. by rewrite equiv_refl.
     intro E. apply H. by rewrite E.
   - move => y. by rewrite big_pred1_eq.
 Defined.
 Lemma merge_nothing'E x: merge_nothing' (\pi x) = x.
 Proof. by rewrite /=merge_surjE. Qed.
End h_merge_nothing'.
Global Opaque merge_nothing'.

Section merge_merge.
  Variables (F: graph) (e: equiv_rel F) (e': equiv_rel (merge F e)).
  Lemma hom_merge_merge: is_hom (quot_quot e': merge _ e' -> merge F _) bij_id xpred0.
  Proof.
    split; intros=>//=; first by rewrite -equiv_comp_pi.
    rewrite [X in X _](partition_big (fun x => \pi x) (fun w => \pi w == v)).
    - apply: eqv_bigr => w pw. apply: eqv_big => x //.
      case: (altP (\pi x =P w)) => // ?. subst w. by rewrite -(eqP pw) quot_quotE eqxx.
    - move => x. by rewrite -[v]reprK -[repr v]reprK quot_quotE !eqmodE.
  Qed.
  Lemma merge_merge: merge (merge F e) e' merge F (equiv_comp e').
  Proof. eexists. eapply hom_merge_merge. Defined.
  Lemma merge_mergeE x: merge_merge (\pi (\pi x)) = \pi x.
  Proof. apply quot_quotE. Qed.
End merge_merge.
Global Opaque merge_merge.

Section merge.
  Variables (F G: graph) (h: iso F G) (l: pairs F).
  Definition h_merge: bij (merge_seq F l) (merge_seq G (map_pairs h l)).
    eapply bij_comp. apply (quot_bij h). apply quot_same. apply eqv_clot_iso.
  Defined.
  Lemma h_mergeE (x: F): h_merge (\pi x) = \pi h x.
  Proof. by rewrite /=quot_bijE quot_sameE. Qed.
  Lemma merge_hom: is_hom h_merge h.e h.d.
  Proof.
    split; intros=>/=.
    - rewrite endpoint_iso. symmetry. apply h_mergeE.
    - rewrite quot_sameE. symmetry.
     (* TOCLEAN *)
      apply: (eqv_big_bij (f := h)). exact: bij_perm_enum.
      + move=>x. rewrite eqmodE eqv_clot_map. 2: apply bij_injective.
        apply /idP/idP. move=>/eqP E. rewrite -E. apply piK'.
        intro. apply /eqP. rewrite -(reprK v). by apply /eqquotP.
      + move=> x _. by rewrite vlabel_iso.
    - apply elabel_iso.
  Qed.
  Definition merge_iso: merge_seq F l merge_seq G (map_pairs h l) := Iso merge_hom.
  Lemma merge_isoE (x: F): merge_iso (\pi x) = \pi h x.
  Proof. apply h_mergeE. Qed.
End merge.
Global Opaque h_merge merge_iso.

Section merge_same'.
 Variables (F: graph) (h k: equiv_rel F).
 Hypothesis H: h =2 k.
 Lemma merge_same'_hom: is_hom (quot_same H: merge _ h -> merge _ k) bij_id xpred0.
 Proof.
   split; intros=>//; try (rewrite /=; apply/eqquotP; rewrite -H; apply: piK').
   (* TOCLEAN *)
   apply (eqv_big_bij (f := id))=>//.
   apply (bij_perm_enum bij_id).
   intro. by rewrite -(reprK v) quot_sameE 2!eqmodE H.
 Qed.
 Definition merge_same': merge F h merge F k := Iso merge_same'_hom.
 Lemma merge_same'E (x: F): merge_same' (\pi x) = \pi x.
 Proof. apply quot_sameE. Qed.
End merge_same'.
Global Opaque merge_same'.

Section merge_same.
 Variables (F: graph) (h k: pairs F).
 Hypothesis H: eqv_clot h =2 eqv_clot k.
 Definition merge_same: iso (merge_seq F h) (merge_seq F k) := merge_same' H.
 Definition merge_sameE (x: F): merge_same (\pi x) = \pi x := merge_same'E H x.
End merge_same.
Global Opaque merge_same.

Section merge_nothing.
 Variables (F: graph) (h: pairs F).
 Hypothesis H: List.Forall (fun p => p.1 = p.2) h.
 Definition merge_nothing: merge_seq F h F.
 Proof. apply merge_nothing', eqv_clot_nothing', H. Defined.
 Lemma merge_nothingE (x: F): merge_nothing (\pi x) = x.
 Proof. apply merge_nothing'E. Qed.
End merge_nothing.
Global Opaque merge_nothing.

Section merge_merge_seq.
  Variables (F: graph) (h k: pairs F) (k': pairs (merge_seq F h)).
  Hypothesis kk': k' = map_pairs (pi (eqv_clot h)) k.
  Definition merge_merge_seq: merge_seq (merge_seq F h) k' merge_seq F (h++k).
    eapply iso_comp. apply merge_merge. apply merge_same'.
    abstract by rewrite kk'; apply eqv_clot_cat.
  Defined.
  Lemma merge_merge_seqE (x: F): merge_merge_seq (\pi (\pi x)) = \pi x.
  Proof. by rewrite /=merge_mergeE merge_same'E. Qed.
End merge_merge_seq.
Global Opaque merge_merge_seq.

Lemma eqv_clot_map_lr (F G : finType) (l : pairs F) x y :
  eqv_clot (map_pairs inl l) (@inl F G x) (@inr F G y) = false.
Proof. rewrite (@eqv_clot_mapF _) ?inr_codom_inl //. exact: inl_inj. Qed.

Lemma union_equiv_l_eqv_clot (A B: finType) (l: pairs A):
  union_equiv_l B (eqv_clot l) =2 eqv_clot (map_pairs inl l).
Proof.
  rewrite /union_equiv_l/=/union_equiv_l_rel. move => [x|x] [y|y].
  + rewrite (@eqv_clot_map _ _ _ _ _ (@inl A B)) //. exact: inl_inj.
  + by rewrite eqv_clot_map_lr.
  + by rewrite equiv_sym eqv_clot_map_lr.
  + by rewrite eqv_clot_map_eq ?sum_eqE // inr_codom_inl.
Qed.

Lemma merge_add_edge (G: graph) (r: equiv_rel G) x u y: merge (G [x, u, y]) r merge G r [\pi x, u, \pi y].
Proof. Iso bij_id bij_id xpred0. split=>//. case=>//. by case. Defined.
Lemma merge_add_edgeE (G: graph) (r: equiv_rel G) x u y (z: G): @merge_add_edge G r x u y (\pi z) = \pi z.
Proof. by []. Qed.
Global Opaque merge_add_edge.

Lemma merge_add_vlabel (G: graph) (r: equiv_rel G) x a: merge (G [tst x <- a]) r merge G r [tst \pi x <- a].
Proof.
  Iso bij_id bij_id xpred0. split=>//= v. case: (altP (v =P \pi x)) => [-> {v}|D].
  - rewrite (bigD1 x) // [in X in _ X](bigD1 x) // ?eqxx monA. apply: mon_eqv => //.
    apply: eqv_bigr => y /andP [_ H]. by rewrite (negbTE H).
  - apply: (eqv_big_bij (f := bij_id)) => //.
    + exact: bij_perm_enum.
    + move => /= y /eqP ?. case: (altP (y =P x)) => // ?; subst. by rewrite eqxx in D.
Defined.
Lemma merge_add_vlabelE (G: graph) (r: equiv_rel G) x a (z: G): @merge_add_vlabel G r x a (\pi z) = \pi z.
Proof. by []. Qed.
Global Opaque merge_add_vlabel.

isomorphisms about union and merge (Lemma 4.11)


Section union_merge_l.
  Variables (F G: graph) (l: pairs F).
  Definition h_union_merge_l: bij (merge_seq F l G) (merge_seq (F G) (map_pairs unl l)).
  Proof. eapply bij_comp. apply union_quot_l. apply quot_same. apply union_equiv_l_eqv_clot. Defined.
  Lemma hom_union_merge_l: is_hom h_union_merge_l bij_id xpred0.
  Proof.
    split; try by case; intros=>//=; rewrite ?union_quot_lEl ?union_quot_lEr quot_sameE //.
    move=> x. rewrite /=quot_sameE. case:x=>[x|x].
    have x0 := repr x.
    - pose f (z : F + G) := if z is inl z' then z' else x0.
      etransitivity. apply: (reindex_onto (@inl _ _) f) => /=.
      + move => [i|i] //=.
        by rewrite eq_sym eqmodE eqv_clot_map_lr.
      + rewrite [X in X _]big_mkcond [X in _ X]big_mkcond.
        (* TOCLEAN *)
        apply: eqv_bigr => z _ => /=.
        rewrite eqmodE eqv_clot_map. 2: apply inl_inj.
        rewrite eqxx andbT -{2}(reprK x) eqmodE//.
    - apply (big_pred1 (inr x))=>y.
      rewrite eqmodE. case y=>z.
      + by rewrite eqv_clot_map_lr.
      + apply eqv_clot_map_eq. by rewrite inr_codom_inl.
  Qed.
  Definition union_merge_l: merge_seq F l G merge_seq (F G) (map_pairs unl l) :=
    Iso hom_union_merge_l.
  Lemma union_merge_lEl (x: F): union_merge_l (@unl (merge_seq F l) _ (\pi x)) = \pi unl x.
  Proof. by rewrite /=union_quot_lEl quot_sameE. Qed.
  Lemma union_merge_lEr (x: G): union_merge_l (unr x) = \pi unr x.
  Proof. by rewrite /=union_quot_lEr quot_sameE. Qed.
  Lemma union_merge_lE' (x: F+G):
    union_merge_l^-1 (\pi x) =
    match x with inl y => @unl (merge_seq F l) _ (\pi y) | inr y => unr y end.
  Proof. by rewrite /=quot_sameE' union_quot_lE'. Qed.
End union_merge_l.
Global Opaque union_merge_l.

Lemma map_map_pairs {A B C} (f: A -> B) (g: B -> C) l: map_pairs g (map_pairs f l) = map_pairs (g \o f) l.
Proof. by rewrite /map_pairs -map_comp. Qed.

Lemma map_pairs_id {A} (l: pairs A): map_pairs id l = l.
Proof. elim l=>//=[[a a'] q]/=. congruence. Qed.

Section union_merge_r.

  Variables (F G: graph) (l: pairs G).
  Lemma union_merge_r: F merge_seq G l merge_seq (F G) (map_pairs unr l).
  Proof.
    eapply iso_comp. apply union_C.
    eapply iso_comp. apply union_merge_l.
    eapply iso_comp. apply (merge_iso (union_C _ _)).
    apply merge_same. abstract by rewrite map_map_pairs.
  Defined.
  Lemma union_merge_rEr (x: G): union_merge_r (@unr _ (merge_seq G l) (\pi x)) = \pi (unr x).
  Proof.
    (* BUG: the second rewrite hangs if F and x are not given *)
    rewrite /=. rewrite (union_merge_lEl F _ x).
    rewrite (merge_isoE (union_C G F) _ (unl x)).
    by rewrite merge_sameE.
  Qed.
  Lemma union_merge_rEl (x: F): union_merge_r (unl x) = \pi (unl x).
  Proof.
    rewrite /=. rewrite (union_merge_lEr _ x) .
    rewrite (merge_isoE (union_C G F) _ (unr x)).
    by rewrite merge_sameE.
  Qed.
End union_merge_r.
Global Opaque union_merge_r.

Section merge_union_K.
  Variables (F K: graph) (h: pairs (F+K)) (k: K -> F).
  Definition union_K_pairs := map_pairs (sum_left k) h.

  Hypothesis kv: forall x: K, vlabel x = 1%lbl.
  Hypothesis kh: forall x: K, unr x = unl (k x) %[mod (eqv_clot h)].

  Lemma equiv_clot_Kl: union_K_equiv (eqv_clot h) =2 eqv_clot union_K_pairs.
  Proof.
    move=> x y. rewrite /union_K_equiv map_equivE.
    rewrite !eqv_clotE. set e1 := rel_of_pairs _. set e2 := rel_of_pairs _.
    apply/idP/idP.
    - suff S u v : equiv_of e1 u v -> equiv_of e2 (sum_left k u) (sum_left k v) by apply: S.
      apply: equiv_ofE => {u v} [[u|u] [u'|u']] /= H.
      all: rewrite /e2 /sum_left; apply: sub_equiv_of; apply/mapP.
      + by exists (unl u,unl u').
      + by exists (unl u,unr u').
      + by exists (unr u,unl u').
      + by exists (unr u,unr u').
    - apply: equiv_ofE => {x y} x x' xx'.
      have kh' z : equiv_of e1 (unr z) (unl (k z)).
      { rewrite -eqv_clotE. apply/eqquotP. exact: kh. }
      case/mapP : xx' => [[[u|u] [v|v]] H] /= [-> ->] {x x'}.
      + exact: sub_equiv_of.
      + etransitivity. 2: apply kh'. by apply sub_equiv_of.
      + etransitivity. symmetry; apply kh'. by apply sub_equiv_of.
      + etransitivity. 2: apply kh'. etransitivity. symmetry; apply kh'. by apply sub_equiv_of.
  Qed.

  Definition h_merge_union_K: bij (merge_seq (union F K) h) (merge_seq F union_K_pairs).
    eapply bij_comp. apply quot_union_K with k. apply kh.
    apply quot_same. apply equiv_clot_Kl.
  Defined.

  Hypothesis ke: edge K -> False.

  Definition h_merge_union_Ke1 (e: edge (merge_seq (union F K) h)): edge (merge_seq F union_K_pairs) :=
    match e with inl e => e | inr e => match ke e with end end.

  Definition h_merge_union_Ke: bij (edge (merge_seq (union F K) h)) (edge (merge_seq F union_K_pairs)).
    exists h_merge_union_Ke1 inl=>x//. by case x.
  Defined.

  Lemma hom_merge_union_K: is_hom h_merge_union_K h_merge_union_Ke xpred0.
  Proof.
    split; try (case; intros =>//=; by rewrite quot_union_KE quot_sameE).
    move=> v/=.
    rewrite quot_sameE/=.
    have x0 : F. { case: (repr v). exact: id. exact k. }
    etransitivity. apply: (reindex_onto (sum_left (fun _ : K => x0)) (@inl _ _)) => //.
    rewrite /= [X in X _]big_mkcond [X in _ X]big_mkcond /=.
    apply: eqv_bigr => [[x|x]] /= _.
    - rewrite eqxx andbT eqmodE. rewrite -{2}(reprK v) eqmodE.
      rewrite -equiv_clot_Kl. simpl. rewrite /map_equiv_rel/=.
      set (r := repr _). case r=>//= w.
      generalize (kh w). rewrite -eqmodE. move <-. by rewrite eqmodE.
    - rewrite andbC kv -[X in X _]/1. by case: ifP.
  Qed.

  Definition merge_union_K: merge_seq (F K) h merge_seq F union_K_pairs :=
    Iso hom_merge_union_K.
  Lemma merge_union_KE (x: F+K): merge_union_K (\pi x) = \pi (sum_left k x).
  Proof. by rewrite /=quot_union_KE quot_sameE. Qed.
End merge_union_K.
Global Opaque merge_union_K.

(* other isomorphisms on concrete graphs *)

Lemma two_graph_swap a b: two_graph a b two_graph b a.
Proof. apply union_C. Defined.

Global Instance add_vertex_iso : CProper (iso ==> eqv ==> iso) add_vertex.
Proof. move => F G h a b ab. apply (union_iso h (unit_graph_iso ab)). Defined.

Subgraphs and Induced Subgraphs


Definition subgraph (H G : graph) :=
  exists hv he hd, @is_hom H G hv he hd /\ injective hv /\ injective he.

Section Subgraphs.
  Variables (G : graph) (V : {set G}) (E : {set edge G}).
  Definition consistent := forall e b, e \in E -> endpoint b e \in V.
  Hypothesis in_V : consistent.

  Definition sub_vertex := sig_finType (fun x => x \in V).
  Definition sub_edge := sig_finType (fun e => e \in E).

  Definition subgraph_for :=
    {| vertex := sub_vertex;
       edge := sub_edge;
       endpoint b e := Sub (endpoint b (val e)) (in_V b (valP e));
       vlabel x := vlabel (val x);
       elabel e := elabel (val e);
    |}.

  Lemma subgraph_sub : subgraph subgraph_for G.
  Proof. exists val, val, xpred0. split => //=. split; exact: val_inj. Qed.

  (* edge deletion is treated as a special case, because this avoids the change in the vertex type *)
  (* TODO: would be more natural to have a 'restrict_edges' operations 
     (same as remove_edge, without set complement on E)  
     and maybe also define restrict_vertices, which would assume that removed vertices have no incident edge, and subgraph_for be defined in terms of restrict_edges and restrict_vertices
   *)

  Definition remove_edges :=
    {| vertex := G;
       edge := sig_finType (fun e: edge G => e \notin E);
       endpoint b e := endpoint b (val e);
       vlabel x := vlabel x;
       elabel e := elabel (val e); |}.

  Lemma remove_edges_sub : subgraph remove_edges G.
  Proof. exists id, val, xpred0. split => //=. split. apply inj_id. apply val_inj. Qed.

End Subgraphs.

Section Edges.
Variables (G : graph).
Implicit Types (x y : G).

Definition edges x y :=
  [set e | (source e == x) && (target e == y)].

Definition edge_set (S : {set G}) :=
  (* DPtoCD: forall b, endpoint b e \in S *)
  [set e | (source e \in S) && (target e \in S)].

Lemma edge_set1 x : edge_set [set x] = edges x x.
Proof. apply/setP=> e. by rewrite !inE. Qed.

Lemma edge_in_set e (A : {set G}) x y :
  x \in A -> y \in A -> e \in edges x y -> e \in edge_set A.
Proof. move => Hx Hy. rewrite !inE => /andP[/eqP->/eqP->]. by rewrite Hx. Qed.

Definition incident x e := [exists b, endpoint b e == x].
Definition edges_at x := [set e | incident x e].

Definition edges_in (V : {set G}) := (\bigcup_(x in V) edges_at x)%SET.

Lemma edges_in1 (x : G) : edges_in [set x] = edges_at x.
Proof. by rewrite /edges_in big_set1. Qed.

End Edges.
Arguments edges_at [G] x, G x.

(* Frequently used consistent sets of vertices and edges *)

Lemma consistentT (G : graph) (E : {set edge G}) : consistent setT E.
Proof. by []. Qed.
Arguments consistentT [G] E.

Lemma consistentTT (G : graph) : consistent [set: G] [set: edge G].
Proof. done. Qed.
Arguments consistentTT : clear implicits.

Definition induced_proof (G: graph) (S : {set G}) : consistent S (edge_set S).
Proof. move => e b; rewrite inE=>/andP[? ?]; by case b. Qed.

Definition induced (G: graph) (S : {set G}) :=
  subgraph_for (@induced_proof G S).

Lemma induced_sub (G: graph) (S : {set G}) : subgraph (induced S) G.
Proof. exact: subgraph_sub. Qed.

Lemma consistent_del1 (G : graph) (x : G) : consistent [set~ x] (~: edges_at x).
Proof. move => e b. rewrite !inE. apply: contraNneq => <-. by existsb b. Qed.

(* Commonly used subgraphs *)
Definition remove_vertex (G : graph) (z : G) : graph :=
  subgraph_for (@consistent_del1 G z).

isomorphisms about subgraphs

(* not neded for now *)

Lemma incident_iso (F G : graph) (h : F G) (x : F) (e : edge F) :
  incident x e = incident (h x) (h.e e).
Proof.
  rewrite /incident. apply/existsP/existsP => [] [b] E; exists (h.d e (+) b).
  - by rewrite endpoint_iso addbA addbb addFb (eqP E).
  - by rewrite endpoint_iso bij_eq in E.
Qed.

Lemma edges_at_iso (F G : graph) (h : F G) (x : F) :
  edges_at (h x) = [set h.e e | e in edges_at x].
Proof.
  apply/setP => e. by rewrite -[e](bijK' h.e) bij_mem_imset !inE (incident_iso h).
Qed.

Lemma setT_bij_hom (G : graph) : @is_hom (subgraph_for (@consistentTT G)) G setT_bij setT_bij xpred0.
Proof. by []. Qed.

Definition iso_subgraph_forT (G : graph) : subgraph_for (consistentTT G) G :=
  Iso (setT_bij_hom G).

End s.

Notation source := (endpoint false).
Notation target := (endpoint true).

(* Declare Scope graph_scope. compat:coq-8.9*)
Bind Scope graph_scope with graph.
Delimit Scope graph_scope with G.

Arguments union {L} F G.
Infix "⊎" := union (at level 50, left associativity) : graph_scope.
Arguments unl {L G H}.
Arguments unr {L G H}.

Arguments add_edge {L} G x y u.
Arguments add_vertex {L} G a.
Arguments add_vlabel {L} G x a.
Notation "G ∔ [ x , u , y ]" :=
  (add_edge G x y u) (at level 20, left associativity) : graph_scope.
Notation "G ∔ a" :=
  (add_vertex G a%lbl) (at level 20, left associativity) : graph_scope.
Notation "G [tst x <- a ]" :=
  (add_vlabel G x a%lbl) (at level 20, left associativity) : graph_scope.

Arguments merge {L} _ _.
Notation merge_seq G l := (merge G (eqv_clot l)).

Arguments iso {L}.
Arguments iso_id {_ _}.
Infix "≃" := iso (at level 79).
Notation "h '.e'" := (iso_e h) (at level 2, left associativity, format "h '.e'").
Notation "h '.d'" := (iso_d h) (at level 2, left associativity, format "h '.d'").

Tactic Notation "Iso" uconstr(f) uconstr(g) uconstr(h) :=
  match goal with |- ?F ?G => refine (@Iso _ F G f g h _) end.

Global Hint Resolve iso_id : core. (* so that by gets it... *)

Arguments edges_at [L G] x, [L] G x.

Merging Subgraphs

This construction allows transforming a quotient on G[V1,E1] + G[V2,E2] into a quotient on G[V1 :|: V2, E1 :|: E2], provided the edge sets are disjoint and the quotient merges all duplicated verices (i.e., those occurring both in V1 and in V2. The underlying function on vertices from G[V1,E1] + G[V2,E2] to G[V1 :|: V2, E1 :|: E2] simply drops the inl/inr. For the converse direction, we inject into G[V1,E1] if possible and otherwise into G[V1,E2]. Note that this only yields a bijection after quotienting.

Section MergeSubgraph.
  Variable A: Type.
  Notation graph := (graph (flat_labels A)).
  (* note: the lemma also holds for arbitrarily-labeled graphs when vertices in the intersection are labeled with idempotent elements *)
  Variables (G : graph) (V1 V2 : {set G}) (E1 E2 : {set edge G})
            (con1 : consistent V1 E1) (con2 : consistent V2 E2)
            (h : pairs (subgraph_for con1 subgraph_for con2)%G).

  Lemma consistentU : consistent (V1 :|: V2) (E1 :|: E2).
  Proof using con1 con2.
    move => e b. case/setUP => E.
    - by rewrite !inE con1.
    - by rewrite !inE con2.
  Qed.

  Hypothesis eqvI : forall x (inU : x \in V1) (inV : x \in V2),
      inl (Sub x inU) = inr (Sub x inV) %[mod eqv_clot h].

  Hypothesis disE : [disjoint E1 & E2].

  Local Notation G1 := (subgraph_for con1).
  Local Notation G2 := (subgraph_for con2).
  Local Notation G12 := (subgraph_for consistentU).

  Definition h' := map_pairs (@merge_union_fwd _ _ _) h.
  Lemma eqv_clot_union_rel : merge_union_rel (eqv_clot h) =2 eqv_clot h'.
  Proof.
    move => x y. rewrite /merge_union_rel /h' map_equivE. apply/idP/idP.
    - have aux z : merge_union_fwd (merge_union_bwd z) = z %[mod eqv_clot (map_pairs (@merge_union_fwd _ _ _) h)].
      { apply/eqquotP. case: merge_union_bwdP => *; apply: eq_equiv; by apply: val_inj. }
      move => H. apply/eqquotP. rewrite -[_ x]aux -[_ y]aux. apply/eqquotP.
      move: H. apply: eqv_clot_map'.
    - rewrite eqv_clotE. apply: equiv_ofE => /= {x y} x y.
      rewrite /rel_of_pairs/=. case/mapP => /= [[u v]] in_h [-> ->].
      apply/eqquotP. rewrite 2!(merge_union_can eqvI). apply/eqquotP.
      exact: eqv_clot_pair.
  Qed.

  Definition merge_subgraph_v : bij (merge_seq (G1 G2) h) (merge_seq G12 h') :=
    Eval hnf in (bij_comp (merge_union eqvI) (quot_same eqv_clot_union_rel)).

  Definition merge_subgraph_e : bij (edge G1 + edge G2) (edge G12) :=
    merge_disjoint_union disE.

  Lemma merge_subgraph_hom : is_hom merge_subgraph_v merge_subgraph_e xpred0.
  Proof.
    rewrite /merge_subgraph_e /merge_subgraph_v.
    split=>//.
    - case=> x b /=; rewrite merge_unionE quot_sameE; congr pi; exact: val_inj.
    - case=> e //.
  Qed.

  Definition merge_subgraph_iso : merge_seq (G1 G2) h merge_seq G12 h' :=
    Iso merge_subgraph_hom.

  Lemma merge_subgraph_isoE x0 :
    (forall x, merge_subgraph_iso (\pi (inl x)) = \pi (insubd x0 (val x))) *
    (forall y, merge_subgraph_iso (\pi (inr y)) = \pi (insubd x0 (val y))).
  Proof.
    split => [x|y].
    all: rewrite /= !quot_sameE.
    all: apply/eqquotP; rewrite -eqv_clot_union_rel; apply/eqquotP.
    all: symmetry; rewrite -merge_union_can'; apply: merge_union_fwd_hom => //.
    all: rewrite reprK /merge_union_bwd.
    - case: setU_dec; rewrite val_insubd !inE !(valP x) //=. 2: by case.
      move => a. by rewrite valK'.
    - case: setU_dec; rewrite !val_insubd !inE !(valP y) !orbT //=.
      + move => a. by rewrite -{2}[y]valK' ?(valP y).
      + case => a b /=. by rewrite valK'.
  Qed.

End MergeSubgraph.

Walks


Definition mgraph_rel L (G : graph L) : rel G :=
  fun x y => [exists e, (source e == x) && (target e == y)].

Definition digraph_of L (G : graph L) := DiGraph (@mgraph_rel L G).
(* Coercion mgraph_relType : graph >-> diGraph. -- breaks skeleton.v *)

Section Walk.
Variable (L : labels) (G : graph L).
Implicit Types (x y z : G) (e : edge G) (w : seq (edge G)).

Fixpoint walk x y w :=
  if w is e :: w' then (source e == x) && walk (target e) y w' else x == y.

Definition eseparates x y (E : {set edge G}) :=
  forall w, walk x y w -> exists2 e, e \in E & e \in w.

Definition line_graph := DiGraph [rel e1 e2 : edge G | target e1 == source e2].

Lemma walk_of_line e1 e2 (p : @Path line_graph e1 e2) :
  walk (source e1) (target e2) (nodes p).
Proof.
  case: p => p pth_p. rewrite nodesE /= eqxx /=.
  elim: p e1 pth_p => [e1 pth_p|e w IHw e1].
  - by rewrite (pathp_nil pth_p) /= eqxx.
  - by rewrite pathp_cons /edge_rel /= eq_sym => /andP [-> /IHw].
Qed.

Lemma line_of_walk x y w : walk x y w -> ~~ nilp w ->
  exists e1 e2 (p : @Path line_graph e1 e2), [/\ source e1 = x, target e2 = y & nodes p = w].
Proof.
  elim: w x => //= e [|e' w] IH x /andP[src_e walk_w] _.
  - exists e. exists e. exists (@idp line_graph e).
    rewrite nodesE /idp /= (eqP src_e). split => //. exact/eqP.
  - case: (IH _ walk_w _) => // e1 [e2] [p] [P1 P2 P3].
    have ee1 : @edge_rel line_graph e e1 by apply/eqP; rewrite P1.
    exists e. exists e2. exists (pcat (edgep ee1) p). rewrite (eqP src_e) P2. split => //.
    rewrite !nodesE /= in P3 *. case: P3 => ? ?. by subst.
Qed.

End Walk.