Le mathématicien Etienne Ghys détaille la théorie établie par deux chercheurs britanniques en 1957 pour comprendre la propagation d’un fluide dans un milieu aléatoire. Comme toute modélisation, elle nécessite de jongler avec pas mal d’inconnues.
Carte blanche. De nombreux articles ont décrit le développement d’une épidémie au cours du temps, avec une croissance exponentielle du nombre de nouveaux cas au début, puis le fameux pic, et enfin la décroissance tant attendue. On a moins discuté de la contagion à travers un territoire.
La théorie mathématique de la percolation s’intéresse à ce genre de problème. Le mot vient du latin percolatio signifiant « filtration » et il évoque bien sûr le percolateur à café : l’eau bouillante sous pression trouve son chemin à travers les particules de café moulu, comme un virus trouve son chemin dans une population.
La théorie est née en 1957 dans un article de deux chercheurs britanniques, John Michael Hammersley et Simon Ralph Broadbent. Leur motivation initiale concernait les masques respiratoires dont on parle tant en ce moment. Dans leur cas, il s’agissait des masques de protection pour les mineurs de charbon. Le filtre poreux est assimilé à un réseau régulier de tubes très fins interconnectés dont un certain nombre sont bouchés, de manière aléatoire, et il s’agit de comprendre si un gaz peut traverser un tel labyrinthe.
Déterminer la probabilité critique
Plus généralement, ces chercheurs étudient la propagation d’un fluide dans un milieu aléatoire. L’un de leurs exemples est un modèle très simple d’épidémie. Il s’agit d’un verger immense, dans lequel des arbres fruitiers sont plantés régulièrement en formant un réseau carré. On suppose qu’à un certain moment l’un des arbres est atteint d’une maladie qu’il peut potentiellement transmettre à ses voisins. Chaque arbre malade peut contaminer chacun de ses quatre voisins avec une certaine probabilité p (d’autant plus faible que les arbres respectent la « distanciation sociale »).
Comment l’épidémie va-t-elle se propager ? Hammersley et Broadbent démontrent que si p ne dépasse pas une certaine valeur critique, l’épidémie reste localisée : ce sont les clusters dans lesquels la contamination n’atteint qu’un petit groupe d’arbres. Lorsqu’on dépasse cette valeur critique, la maladie envahit brusquement une grande partie du verger (infinie si le verger est infini) et c’est la pandémie.
Bien entendu, ce théorème n’a d’intérêt que si l’on peut déterminer cette probabilité critique. Des simulations numériques suggéraient que la transition cluster-pandémie se passe pour p = 0,5, et il a fallu attendre 1980 pour que cela soit rigoureusement établi. Hélas, on ne connaît ce genre de résultat précis que dans des cas très simples, comme celui du verger régulièrement planté. Dès que les arbres sont plus ou moins dans le désordre, on comprend moins bien le phénomène.
Informations très partielles
Dans le cas qui nous intéresse, les arbres sont des individus en chair et en os qui ne sont heureusement pas plantés régulièrement et qui se déplacent. De plus, le nombre de contacts d’un individu, c’est-à-dire le nombre de personnes qu’il rencontre dans une journée, et qu’il peut potentiellement contaminer, est extrêmement variable d’un individu à l’autre. Cela dépend de l’endroit où il habite, de son âge, et de bien d’autres paramètres.
On ne dispose que d’informations très partielles sur les statistiques de ces contacts. Enfin, un dernier problème se présente : lorsqu’un malade rencontre une personne saine, la probabilité de contamination est également variable, et mal connue.
Pour bien faire, il faudrait connaître précisément un grand nombre de paramètres dont beaucoup sont inaccessibles. Le modélisateur doit sélectionner un petit nombre d’entre eux qui lui semblent les plus pertinents, et dont il a une connaissance raisonnable. Il lui faut alors déterminer si les autres paramètres – qu’il connaît mal – pourraient avoir une influence importante sur le résultat de ses prévisions. Ce n’est pas facile. La modélisation mathématique est tout un art.