Lauréat de la médaille Fields en 1990, le Néo-Zélandais est décédé le 6 septembre 2020. Etienne Ghys lui rend hommage dans sa chronique au « Monde ».
Carte blanche. Le mathématicien Vaughan Jones est décédé le 6 septembre 2020 dans le Tennessee, aux Etats-Unis. Il avait reçu la médaille Fields à Kyoto en 1990. Il arrive parfois qu’un mathématicien établisse des ponts entre des domaines qu’on croyait totalement indépendants. Ce sont des moments de grâce dans le développement des mathématiques, réservés aux plus créatifs, comme Vaughan. Il ne faudrait pas croire cependant qu’il s’agisse d’eurêka ! qui surgissent tout à coup. Il faut presque toujours une longue maturation, peu compatible avec l’exigence d’immédiateté de notre système universitaire actuel. L’université de Genève a permis à Vaughan Jones de s’épanouir et de donner le meilleur de lui-même.
Vaughan arrive en Suisse en 1974 en provenance de Nouvelle-Zélande pour faire un doctorat en physique. Un jour, sa thèse presque achevée, il passe la porte du département de mathématiques et est fasciné par le cours d’André Haefliger : il abandonne la physique pour se lancer dans une thèse de mathématiques (même si, bien sûr, sa formation de physicien restera fondamentale). Il travaille sur les « algèbres de von Neumann », un domaine tellement abstrait que les espaces qu’on y étudie ont des dimensions qui ne sont pas des nombres entiers. Imaginez par exemple un espace dont la dimension est 3,14… ! Haefliger – son directeur de thèse – n’est pas spécialiste de ce sujet, ce qui est un signe de la grande originalité de l’étudiant et de l’ouverture d’esprit de son maître.
Le Suisse Pierre de la Harpe, qui connaît bien le sujet, deviendra un ami et un « grand frère mathématique » de Vaughan. A cette époque, le petit département de Genève était un bouillon de culture animé par quelques mathématiciens seniors exceptionnels qui luttaient contre toute forme de spécialisation exagérée. On y parlait beaucoup d’algèbre, de géométrie et d’analyse, très souvent dans le petit bistro italien au rez-de-chaussée. Le jour de la soutenance de Vaughan, en 1979, il était vêtu d’un smoking, ce qui contrastait avec la manière dont le jury était habillé. En 1990, lors de la cérémonie de remise de la médaille Fields, en présence d’autorités japonaises très formelles, il avait tenu en revanche à revêtir le maillot des All Blacks, par attachement à son origine néo-zélandaise.
Sidération des spécialiste
Après sa thèse, il s’établit aux Etats-Unis mais il repasse souvent à Genève. Un jour, après un de ses exposés, quelqu’un lui fait remarquer, peut-être au bistro italien, une analogie entre une relation qu’il a écrite au tableau et ce qu’on appelle le « groupe de tresses », que Vaughan ne connaissait pas. Il n’en fallait pas plus pour entrevoir un lien entre le sujet de sa thèse et un thème nouveau pour lui : la théorie des nœuds. Tout cela aboutira à une découverte majeure en 1984 : le « polynôme de Jones » associé à un nœud. Les nœuds, en mathématiques, sont ceux qu’on imagine, comme ceux des marins. La théorie mathématique des nœuds date du XIXe siècle et n’avait a priori rien à voir avec les algèbres de von Neumann. L’annonce par Vaughan d’une application importante de ces algèbres dans le domaine des nœuds engendrera une espèce de sidération parmi les spécialistes de la topologie. Il reçut la médaille Fields mais il fut aussi élu vice-président à vie de la Guilde internationale des faiseurs de nœuds, ce dont il était très fier.
La suite de sa carrière a été admirable. Depuis une vingtaine d’années, l’Ecole normale supérieure de Lyon organise un week-end mathématique regroupant une cinquantaine d’étudiants et un mathématicien expérimenté. En 2012, Vaughan Jones avait littéralement charmé les jeunes étudiants. Nous avons non seulement perdu un mathématicien brillant, mais aussi un modèle de générosité et d’ouverture pour la jeunesse