Le « jeu de la vie », imitation féconde

https://www.lemonde.fr/sciences/article/2022/02/16/le-jeu-de-la-vie-imitation-feconde_6113863_1650684.html

La chaîne Arte.tv a mis en ligne dix vidéos de dix minutes chacune, proposant dix « voyages au pays des maths », réalisées par Denis van Waerebeke. Certes, elles ne font pas partie du programme en direct, mais elles resteront disponibles jusqu’à fin 2026, ce qui est encore mieux. Dix voyages très réussis, à la fois esthétiquement et conceptuellement. En dix minutes, « on y rencontre des paysages épiques, des idées vertigineuses, et même parfois des choses utiles », comme expliqué dans le préambule.

Les vidéos valent toutes le détour mais voici un teaser pour l’une d’entre elles, intitulée « Le jeu de la vie ». La question de savoir si un virus est vivant est un peu artificielle tant qu’on ne donne pas de définition du mot « vivant ». Sans définitions claires, il ne peut y avoir de science. En 1940, John von Neumann propose une définition toute théorique. Il faut d’abord qu’un être vivant puisse se reproduire. Mais cela ne suffit pas car on peut facilement imaginer un robot possédant son propre plan de montage qui se déplace autour de lui à la recherche des pièces nécessaires à sa réplication. Il peut alors fabriquer une copie de lui-même. Pourtant, personne ne qualifierait de vivant un tel robot.

Un être vivant doit faire autre chose que se reproduire : Neumann demande qu’il puisse simuler une machine de Turing, autrement dit qu’il puisse faire ce que font nos ordinateurs. Voilà une définition bien abstraite de la vie ! En 1944, le physicien Erwin Schrödinger, l’un des pères fondateurs de la physique quantique, publie un ouvrage intitulé Qu’est-ce que la vie ? Aujourd’hui, ce livre est obsolète car on ne connaissait pas à l’époque la structure et le fonctionnement de l’ADN. Mais il contenait l’idée essentielle qu’une cellule vivante doit contenir une sorte de code reproductible.

Créer des formes à l’infini

Vers 1968, le mathématicien John Conway inventa un jeu très simple qui tentait d’imiter la vie. Sur un plateau (infini) divisé en cases, comme un immense damier, on dépose quelques jetons qui dessinent une certaine forme. La règle du jeu est alors la suivante. Pour chaque jeton, on compte le nombre de jetons qui lui sont contigus. Si ce nombre est 2 ou 3, on le laisse en place. Dans le cas contraire on le retire du plateau. Sur chaque case vide entourée par exactement trois jetons, on dépose un nouveau jeton. La forme initiale devient alors une nouvelle forme, et on recommence l’opération… On voit ainsi une succession de formes. Au début, Conway travaillait avec de vrais jetons sur un plateau de go, mais très vite les ordinateurs ont permis de simplifier le travail. A force d’essais, il a découvert un certain nombre de configurations qui semblaient osciller en revenant périodiquement à leur position initiale.

En 1970, il proposa une récompense de 50 dollars à celui ou celle qui découvrirait une configuration dont la taille tendrait vers l’infini lors de son développement. Il dut tenir sa promesse car on trouva une forme de « canon » qui envoie régulièrement des « boulets ». Par la suite, il y eut un véritable engouement pour ce jeu parce qu’il est très facile à programmer sur un ordinateur et que tout le monde peut y jouer. Téléchargez l’application gratuite Golly pour vous amuser. En 1982, Conway démontra qu’il s’agit en effet de « vie », selon la définition de Neumann. Aujourd’hui, les progrès sont incroyables. Certaines configurations sont constituées d’une « membrane » qui contient un filament d’« ADN ». Ces « êtres vivants » virtuels et abstraits peuvent avoir une reproduction « sexuée » dans laquelle les filaments se mélangent. Ils peuvent muter et évoluer, comme dans la vraie vie. Vous trouverez neuf autres voyages mathématiques sur Arte.tv.