From mathcomp Require Import all_ssreflect.
Require Import edone finite_quotient preliminaries sgraph minor multigraph skeleton.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Local Open Scope quotient_scope.
Set Bullet Behavior "Strict Subproofs".
Implicit Types (G H : graph) (U : sgraph) (T : forest).
Require Import edone finite_quotient preliminaries sgraph minor multigraph skeleton.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Local Open Scope quotient_scope.
Set Bullet Behavior "Strict Subproofs".
Implicit Types (G H : graph) (U : sgraph) (T : forest).
Arguments sdecomp [T G] B.
Lemma rename_decomp (T : forest) (G H : sgraph) D (dec_D : sdecomp D) (h : G -> H) :
hom_s h ->
surjective h ->
(forall x y : H, x -- y -> exists x0 y0, [/\ h x0 = x, h y0 = y & x0 -- y0]) ->
(forall x y, h x = h y -> exists t, (x \in D t) && (y \in D t)) ->
@sdecomp T _ (rename D h).
Proof.
move => hom_h sur_h sur_e comp_h.
split.
- move => x. pose x0 := cr sur_h x. case: (sbag_cover dec_D x0) => t Ht.
exists t. apply/imsetP. exists x0; by rewrite ?crK.
- move => x y xy. case: (sur_e _ _ xy) => x0 [y0] [hx0 hy0 e0].
case: (sbag_edge dec_D e0) => t /andP [t1 t2].
exists t. apply/andP;split;apply/imsetP;by [exists x0|exists y0].
- move => x t1 t2 bg1 bg2.
case/imsetP : (bg1) (bg2) => x0 A B /imsetP [x1 C E]. subst. rewrite E in bg2.
case: (comp_h _ _ E) => t /andP [F I].
apply: (connect_trans (y := t)).
+ apply: connect_mono (sbag_conn dec_D A F) => u v /= /andP [/andP [X Y] Z].
rewrite Z andbT. apply/andP;split; by apply/imsetP;exists x0.
+ apply: connect_mono (sbag_conn dec_D I C) => u v /= /andP [/andP [X Y] Z].
rewrite E Z andbT. apply/andP;split; by apply/imsetP;exists x1.
Qed.
Lemma rename_width (T : forest) (G : graph) (D : T -> {set G}) (G' : finType) (h : G -> G') :
width (rename D h) <= width D.
Proof. rewrite max_mono // => t. exact: leq_imset_card. Qed.
Lemma rename_decomp (T : forest) (G H : sgraph) D (dec_D : sdecomp D) (h : G -> H) :
hom_s h ->
surjective h ->
(forall x y : H, x -- y -> exists x0 y0, [/\ h x0 = x, h y0 = y & x0 -- y0]) ->
(forall x y, h x = h y -> exists t, (x \in D t) && (y \in D t)) ->
@sdecomp T _ (rename D h).
Proof.
move => hom_h sur_h sur_e comp_h.
split.
- move => x. pose x0 := cr sur_h x. case: (sbag_cover dec_D x0) => t Ht.
exists t. apply/imsetP. exists x0; by rewrite ?crK.
- move => x y xy. case: (sur_e _ _ xy) => x0 [y0] [hx0 hy0 e0].
case: (sbag_edge dec_D e0) => t /andP [t1 t2].
exists t. apply/andP;split;apply/imsetP;by [exists x0|exists y0].
- move => x t1 t2 bg1 bg2.
case/imsetP : (bg1) (bg2) => x0 A B /imsetP [x1 C E]. subst. rewrite E in bg2.
case: (comp_h _ _ E) => t /andP [F I].
apply: (connect_trans (y := t)).
+ apply: connect_mono (sbag_conn dec_D A F) => u v /= /andP [/andP [X Y] Z].
rewrite Z andbT. apply/andP;split; by apply/imsetP;exists x0.
+ apply: connect_mono (sbag_conn dec_D I C) => u v /= /andP [/andP [X Y] Z].
rewrite E Z andbT. apply/andP;split; by apply/imsetP;exists x1.
Qed.
Lemma rename_width (T : forest) (G : graph) (D : T -> {set G}) (G' : finType) (h : G -> G') :
width (rename D h) <= width D.
Proof. rewrite max_mono // => t. exact: leq_imset_card. Qed.
Section JoinT.
Variables (T1 T2 : forest).
Lemma sub_inl (a b : T1) (p : @Path (sjoin T1 T2) (inl a) (inl b)) :
{subset p <= codom inl}.
Proof.
apply: path_closed; first by rewrite codom_f.
do 2 case => ? //; rewrite ?codom_f //. by case/codomP => ?.
Qed.
Lemma sub_inr (a b : T2) (p : @Path (sjoin T1 T2) (inr a) (inr b)) :
{subset p <= codom inr}.
Proof.
apply: path_closed; first by rewrite codom_f.
do 2 case => ? //; rewrite ?codom_f //. by case/codomP => ?.
Qed.
Arguments inl_inj [A B].
Prenex Implicits inl_inj.
Lemma join_is_forest : is_forest [set: sjoin T1 T2].
Proof with try solve [exact: inl_inj|exact: inr_inj
|exact: sub_inl|exact: sub_inr].
move => [a|a] [b|b] p q [Ip _] [Iq _].
- case: (lift_Path (p' := p)) => //...
case: (lift_Path (p' := q)) => //...
move => p' Np I q' Nq I'.
have E : p' = q'. { apply: forestP; by rewrite ?I ?I'. }
apply/eqP. by rewrite -nodes_eqE -Nq -E Np.
- move: (Path_connect p). by rewrite join_disc.
- move: (Path_connect p). by rewrite sconnect_sym join_disc.
- case: (lift_Path (p' := p)) => //...
case: (lift_Path (p' := q)) => //...
move => p' Np I q' Nq I'.
have E : p' = q'. { apply: forestP; by rewrite ?I ?I'. }
apply/eqP. by rewrite -nodes_eqE -Nq -E Np.
Qed.
Definition tjoin := @Forest (sjoin T1 T2) join_is_forest.
Definition decompU (G1 G2 : sgraph) (D1 : T1 -> {set G1}) (D2 : T2 -> {set G2}) :
tjoin -> {set sjoin G1 G2} :=
[fun a => match a with
| inl a => [set inl x | x in D1 a]
| inr a => [set inr x | x in D2 a]
end].
Lemma join_decomp (G1 G2 : sgraph) (D1 : T1 -> {set G1}) (D2 : T2 -> {set G2}) :
sdecomp D1 -> sdecomp D2 -> sdecomp (decompU D1 D2).
Proof using.
move => dec1 dec2. split.
- move => [x|x].
+ case: (sbag_cover dec1 x) => t Ht. exists (inl t) => /=. by rewrite mem_imset.
+ case: (sbag_cover dec2 x) => t Ht. exists (inr t) => /=. by rewrite mem_imset.
- move => [x|x] [y|y] // xy.
+ case: (sbag_edge dec1 xy) => t /andP [H1 H2]. exists (inl t) => /=. by rewrite !mem_imset.
+ case: (sbag_edge dec2 xy) => t /andP [H1 H2]. exists (inr t) => /=. by rewrite !mem_imset.
- have inl_inr x t : inl x \in decompU D1 D2 (inr t) = false.
{ rewrite /decompU /=. apply/negbTE/negP. by case/imsetP. }
have inr_inl x t : inr x \in decompU D1 D2 (inl t) = false.
{ rewrite /decompU /=. apply/negbTE/negP. by case/imsetP. }
move => [x|x] [t1|t1] [t2|t2] /= ; rewrite ?inl_inr ?inr_inl // => A B.
+ pose e := restrict [pred t | x \in D1 t] sedge.
apply: (connect_img (e:= e) (f := inl)).
* move => a b. rewrite /e /= !in_simpl -andbA => /and3P[? ? ?].
by rewrite !mem_imset.
* apply: sbag_conn => //.
move: A. by case/imsetP => ? ? [->].
move: B. by case/imsetP => ? ? [->].
+ pose e := restrict [pred t | x \in D2 t] sedge.
apply: (connect_img (e:= e) (f := inr)).
* move => a b. rewrite /e /= !in_simpl -andbA => /and3P[? ? ?].
by rewrite !mem_imset.
* apply: sbag_conn => //.
move: A. by case/imsetP => ? ? [->].
move: B. by case/imsetP => ? ? [->].
Qed.
Lemma join_width (G1 G2 : sgraph) (D1 : T1 -> {set G1}) (D2 : T2 -> {set G2}) :
width (decompU D1 D2) <= maxn (width D1) (width D2).
Proof.
apply/bigmax_leqP => [[x|x] _].
all: rewrite /decompU /= card_imset; try solve [exact: inl_inj|exact: inr_inj].
- apply: leq_trans (leq_maxl _ _). exact: leq_bigmax.
- apply: leq_trans (leq_maxr _ _). exact: leq_bigmax.
Qed.
End JoinT.
Section Link.
Variables (T : forest) (U : {set T}).
Hypothesis U_disc : {in U &,forall x y, x != y -> ~~ connect sedge x y}.
Definition link := add_node T U.
Lemma link_unique_lift (x y : link) :
unique (fun p : Path x y => irred p /\ None \notin p).
Proof.
move: x y => [x|] [y|] p q [Ip Np] [Iq Nq];
try by rewrite ?(@nodes_end link) ?(@nodes_start link) in Np Nq.
gen have H,Hp : p Ip Np / {subset p <= codom Some}.
{ move => [u|]; by rewrite ?codom_f // (negbTE Np). }
case: (lift_Path (p' := p)) => //.
case: (lift_Path (p' := q)) => //; first exact: H.
move => p0 Ep Ip0 q0 Eq Iq0.
have E : p0 = q0. apply: forestP; by rewrite ?Ip0 ?Iq0.
apply/eqP. rewrite -nodes_eqE. by apply/eqP;congruence.
Qed.
Lemma link_bypass (x y : T) (p : @Path link (Some x) (Some y)) :
x \in U -> y \in U -> None \notin p -> x = y.
Proof.
move => xU yU Np. apply: contraTeq isT => /U_disc.
move/(_ xU yU). apply: contraNN => _.
have Hp: {subset p <= codom Some}.
{ move => [u|]; by rewrite ?codom_f // (negbTE Np). }
case: (lift_Path (p' := p)) => //.
move => p' _ _. exact: Path_connect p'.
Qed.
Lemma link_unique_None (x : link) :
unique (fun p : @Path link None x => irred p).
Proof.
move: x => [x|] p q Ip Iq; last by rewrite (irredxx Ip) (irredxx Iq).
case: (splitL p) => // [] [y|] [/= xy] [p'] [P1 _] //.
case: (splitL q) => // [] [z|] [/= xz] [q'] [Q1 _] //. subst.
move: Ip Iq. rewrite !irred_edgeL => /andP[Np Ip] /andP[Nq Iq].
have ? : y = z. {
apply: (link_bypass (p := pcat p' (prev q'))) => //.
by rewrite (@mem_pcat link) mem_prev negb_or Np Nq. }
subst. congr pcat; first exact: val_inj. exact: link_unique_lift.
Qed.
Lemma link_has_None (x y : link) (p q : Path x y) :
irred p -> irred q -> None \in p -> None \in q.
Proof using U_disc.
move: x y p q => [x|] [y|] p q;
try by rewrite ?(@nodes_end link) ?(@nodes_start link).
move => Ip Iq Np. apply: contraTT isT => Nq.
case/(isplitP Ip) def_p : _ / Np => [p1 p2 _ _ _]. subst.
move: Ip. rewrite irred_cat' => /and3P[Ip1 Ip2 /eqP/setP I12].
case: (splitL p2) => // [] [a|] [/= na] [p2'] [D _] //.
case: (splitL (prev p1)) => // [] [b|] [/= nb] [p1'] [D' _] //.
have ? : b = a.
{ suff [p Hp] : exists p : @Path link (Some b) (Some a), None \notin p.
{ exact: link_bypass Hp. }
exists (pcat p1' (pcat q (prev p2'))).
rewrite !(@mem_pcat link) mem_prev (negbTE Nq) /= negb_or.
move: Ip1 Ip2. rewrite -irred_rev D' D !irred_edgeL. by do 2 case: (_ \notin _). }
subst. move: (I12 (Some a)).
rewrite !inE !mem_pcat mem_edgep -mem_prev D' !eqxx /=.
by rewrite (@mem_pcat link) nodes_start orbT => /esym.
Qed.
Lemma link_is_forest : is_forest [set: link].
Proof.
apply: unique_forestT => x y p q Ip Iq.
case: (boolP (None \in p)) => Np.
- have Nq := link_has_None Ip Iq Np.
case/(isplitP Ip) def_p : _ / Np => [p1 p2 Ip1 Ip2 _].
case/(isplitP Iq) def_q : _ / Nq => [q1 q2 Iq1 Iq2 _].
congr pcat.
+ apply: prev_inj. apply: link_unique_None; by rewrite irred_rev.
+ exact: link_unique_None.
- suff Nq : None \notin q by apply: link_unique_lift.
apply: contraNN Np. exact: link_has_None.
Qed.
Definition tlink := @Forest link link_is_forest.
Definition decompL (G:sgraph) (D : T -> {set G}) A a :=
match a with Some x => D x | None => A end.
Lemma decomp_link (G : sgraph) (D : T -> {set G}) (A : {set G}) :
A \subset \bigcup_(t in U) D t ->
sdecomp D -> @sdecomp tlink G (decompL D A).
Proof.
move => HA decD. split => //.
- move => x. case: (sbag_cover decD x) => t Ht. by exists (Some t).
- move => x y xy. case: (sbag_edge decD xy) => t Ht. by exists (Some t).
- have X x a : x \in D a -> x \in A ->
connect (restrict [pred t | x \in decompL D A t] (add_node_rel U))
(Some a) None.
{ move => H1 H2. move/(subsetP HA) : (H2) => /bigcupP [t Ht1 Ht2].
apply: (connect_trans (y := Some t)).
- move: (sbag_conn decD H1 Ht2). exact: connect_img.
- apply: connect1 => /=; by rewrite !in_simpl H2 Ht1. }
move => x [a|] [b|] /= H1 H2; last exact: connect0.
+ move: (sbag_conn decD H1 H2). exact: connect_img.
+ exact: X.
+ rewrite (@srestrict_sym link). exact: X.
Qed.
Lemma width_link (G : sgraph) (D : T -> {set G}) (A : {set G}) :
width (decompL D A) <= maxn (width D) #|A|.
Proof.
apply/bigmax_leqP => [] [t|] _ /=; last by rewrite ?leq_maxr.
apply: leq_trans (leq_maxl _ _). exact: leq_bigmax.
Qed.
End Link.
Arguments sdecomp T G B : clear implicits.
Definition compatible (T : forest) (G : graph2) (B : T -> {set G}) :=
exists t, (g_in \in B t) && (g_out \in B t).
Lemma sdecomp_sskel (T : forest) (G : graph2) (B : T -> {set G}) :
sdecomp T (sskeleton G) B <-> (sdecomp T G B /\ compatible B).
Proof.
split.
- case => [D1 D2 D3]. split. split => //.
+ move => x y /= xy. apply: D2. by rewrite /= xy.
+ case: (altP (g_in =P g_out :> skeleton G)) => E.
* case: (D1 g_in) => t Ht. exists t. by rewrite -E !Ht.
* suff: (g_in : sskeleton G) -- g_out by apply: D2. by rewrite /= E !eqxx.
- move => [[D1 D2 D3] C]. split => //= x y. case/or3P; first exact: D2.
+ case/and3P => ? /eqP E1 /eqP E2. by subst.
+ case/and3P => ? /eqP E1 /eqP E2. subst.
case: C => t. rewrite andbC. by exists t.
Qed.
Lemma hom_eqL (V : finType) (e1 e2 : rel V) (G : sgraph) (h : V -> G)
(e1_sym : symmetric e1) (e1_irrefl : irreflexive e1)
(e2_sym : symmetric e2) (e2_irrefl : irreflexive e2):
e1 =2 e2 ->
@hom_s (SGraph e1_sym e1_irrefl) G h ->
@hom_s (SGraph e2_sym e2_irrefl) G h.
Proof. move => E hom_h x y. rewrite /= -E. exact: hom_h. Qed.
Lemma skel_union_join (G1 G2 : graph) : sk_rel (union G1 G2) =2 @join_rel G1 G2.
Proof.
move => [x|x] [y|y] /=.
- rewrite /sk_rel sum_eqE.
case: (boolP (x == y)) => //= E. apply/existsP/existsP.
+ move => [[e|e]]; rewrite !inE //= !sum_eqE. by exists e; rewrite !inE.
+ move => [e] H. exists (inl e). by rewrite !inE /= !sum_eqE in H *.
- apply: contraTF isT => /andP [_ /existsP [[e|e]]]; by rewrite !inE //= andbC.
- apply: contraTF isT => /andP [_ /existsP [[e|e]]]; by rewrite !inE //= andbC.
- rewrite /sk_rel sum_eqE.
case: (boolP (x == y)) => //= E. apply/existsP/existsP.
+ move => [[e|e]]; rewrite !inE //= !sum_eqE. by exists e; rewrite !inE.
+ move => [e] H. exists (inr e). by rewrite !inE /= !sum_eqE in H *.
Qed.
Section Quotients.
Variables (G1 G2 : graph2).
Let P : {set union G1 G2} := [set inl g_in; inl g_out; inr g_in; inr g_out].
Definition admissible (eqv : rel (union G1 G2)) :=
forall x y, eqv x y -> x = y \/ [set x;y] \subset P.
Lemma decomp_quot (T1 T2 : forest) D1 D2 (e : equiv_rel (union G1 G2)):
sdecomp T1 (sskeleton G1) D1 -> sdecomp T2 (sskeleton G2) D2 ->
width D1 <= 3 -> width D2 <= 3 ->
admissible e -> #|[set \pi_{eq_quot e} x | x in P]| <= 3 ->
exists T D, [/\ sdecomp T (skeleton (merge_def _ e)) D,
width D <= 3 & exists t,
D t = [set \pi_{eq_quot e} x | x in P]].
Proof using.
move => /sdecomp_sskel [dec1 comp1] /sdecomp_sskel [dec2 comp2] W1 W2 adm_e collapse_P.
move: comp1 comp2 => [t1 /andP[t1_in t1_out]] [t2 /andP[t2_in t2_out]].
pose T := tjoin T1 T2.
pose D : tjoin T1 T2 -> {set sjoin G1 G2}:= decompU D1 D2.
have dec_D: sdecomp T (sjoin G1 G2) D by exact: join_decomp.
have dis_t1_t2 : ~~ connect (@sedge T)(inl t1) (inr t2) by rewrite join_disc.
have dis_T12 : {in [set inl t1;inr t2] &, forall x y, x != y -> ~~ connect (@sedge T) x y}.
{ move => [?|?] [?|?] /setUP[] /set1P-> /setUP[]/set1P ->.
all: by rewrite ?eqxx // => _; rewrite sconnect_sym. }
pose T' := @tlink T _ dis_T12.
pose D' := decompL D P : _ -> {set sjoin G1 G2}.
have dec_D' : sdecomp T' (sjoin G1 G2) D'.
{ apply: decomp_link => //.
apply/subsetP => x.
rewrite !inE -!orbA => /or4P [] /eqP->.
all: apply/bigcupP; solve
[ by exists (inl t1) => //; rewrite ?inE ?mem_imset ?eqxx
| by exists (inr t2) => //; rewrite ?inE ?mem_imset ?eqxx]. }
pose h := \pi_{eq_quot e} : skeleton (union G1 G2) -> skeleton (merge_def _ e).
exists T'. exists (rename D' h); split; last by exists None.
- apply: rename_decomp => //.
+ apply: hom_eqL (pi_hom e). exact: skel_union_join.
+ exact: emb_surj.
+ move => x y. move/sk_rel_mergeE => [? [x0] [y0] /= [? ? ?]].
exists x0;exists y0. split => //. by rewrite -skel_union_join.
+ move => x y. move/eqmodP => /=. case/adm_e => [<-|A].
* case: (sbag_cover dec_D' x) => t Ht. exists t. by rewrite Ht.
* exists None. rewrite /= -!sub1set -subUset. done.
- rewrite /width (bigID (pred1 None)).
rewrite big_pred1_eq. rewrite geq_max. apply/andP;split => //.
+ rewrite (reindex Some) /=.
* apply: (@leq_trans (maxn (width D1) (width D2))); last by rewrite geq_max W1 W2.
apply: leq_trans (join_width _ _).
apply: max_mono => t. exact: leq_imset_card.
* apply: subon_bij; last by (apply bij_on_codom => //; exact: (inl t1)).
by move => [x|]; rewrite !in_simpl // codom_f.
Qed.
Definition par2_eqv : rel (union G1 G2) :=
fun x y => (x == y) ||
if (g_in != g_out :> G1) && (g_in != g_out :> G2)
then [set x; y] \in [set [set inl g_in; inr g_in]; [set inl g_out; inr g_out]]
else [set x; y] \subset [set inl g_in; inl g_out; inr g_in; inr g_out].
Definition par2_eqv_refl : reflexive par2_eqv.
Proof. by move=> ?; rewrite /par2_eqv eqxx. Qed.
Lemma par2_eqv_sym : symmetric par2_eqv.
Proof. move=> x y. by rewrite /par2_eqv [[set y; x]]setUC [y == x]eq_sym. Qed.
Definition par2_eqv_trans : transitive par2_eqv.
Proof using.
move=> y x z. rewrite /par2_eqv.
case/altP: (x =P y) => [<-//|xNy/=]. case/altP: (y =P z) => [<-->//|yNz/=].
case/boolP: ((g_in != g_out :> G1) && (g_in != g_out :> G2)).
- rewrite !inE -(implyNb (x == z)).
case/andP=> /negbTE iNo1 /negbTE iNo2 Hxy Hyz. apply/implyP=> xNz.
move: Hxy xNy. rewrite 2!eqEcard 2!subUset 4!sub1set !inE.
case/orP => /andP[]/andP[] /orP[]/eqP ? /orP[]/eqP ? _; subst=> // _.
all: move: Hyz xNz yNz; rewrite 2!eqEcard 2!subUset 4!sub1set !inE.
all: rewrite ?eqxx ?sum_eqE ?[g_out == g_in]eq_sym ?iNo1 ?iNo2 ?orbT ?orbF /=.
all: case/andP => /orP[]/eqP-> _; by rewrite !eqxx.
- rewrite -implyNb => _ Hxy Hyz. apply/implyP=> xNz.
rewrite subUset !sub1set. apply/andP; split.
+ apply: (subsetP Hxy). by rewrite !inE eqxx.
+ apply: (subsetP Hyz). by rewrite !inE eqxx.
Qed.
Canonical par2_eqv_equivalence :=
EquivRel par2_eqv par2_eqv_refl par2_eqv_sym par2_eqv_trans.
Lemma par2_eqv_io :
(par2_eqv (inl g_in) (inr g_in)) * (par2_eqv (inl g_out) (inr g_out)).
Proof.
rewrite /par2_eqv/=. case: ifP => _.
- by rewrite !inE !eqxx.
- by rewrite !subUset !sub1set !inE !eqxx.
Qed.
Definition par2_eq (x y : union G1 G2) :=
match x,y with
| inl x, inr y => (x == g_in) && (y == g_in) || (x == g_out) && (y == g_out)
| _,_ => false
end.
Lemma par2_equiv_of : par2_eqv =2 equiv_of par2_eq.
Proof using.
move=> x y. apply/idP/idP.
- rewrite /par2_eqv. case/altP: (x =P y) => [<- _|xNy]/=; first exact: connect0.
case: ifP => [_|/negbT].
+ rewrite !inE 2!eqEcard 2!subUset 4!sub1set !inE => H.
case/orP: H xNy => /andP[]/andP[]/orP[]/eqP->/orP[]/eqP-> _.
all: rewrite ?eqxx // ?[equiv_of _ (inr _) _]equiv_of_sym => _.
all: apply: sub_equiv_of; by rewrite /par2_eq 2!eqxx.
+ rewrite negb_and 2!negbK. case/orP=> [/eqP Eio1|/eqP Eio2].
* rewrite -Eio1 setUid => Exy.
have Rio2 : equiv_of par2_eq (inr g_out) (inr g_in).
{ apply: (@equiv_of_trans _ _ (inl g_in)); first rewrite equiv_of_sym Eio1;
by apply: sub_equiv_of; rewrite /par2_eq !eqxx. }
move: Exy xNy; rewrite subUset 2!sub1set !inE -2!orbA.
case/andP=> /or3P[]/eqP-> /or3P[]/eqP->.
all: rewrite ?eqxx // ?[equiv_of _ _ (inl _)]equiv_of_sym => _.
all: try solve [apply: (@sub_equiv_of _ _ (inl _));
by rewrite /par2_eq -?Eio1 !eqxx].
by rewrite equiv_of_sym.
* rewrite -setUA -Eio2 setUid => Exy.
have Rio2 : equiv_of par2_eq (inl g_out) (inl g_in).
{ apply: (@equiv_of_trans _ _ (inr g_out)); last rewrite equiv_of_sym -Eio2;
by apply: sub_equiv_of; rewrite /par2_eq !eqxx. }
move: Exy xNy; rewrite subUset 2!sub1set !inE -2!orbA.
case/andP=> /or3P[]/eqP-> /or3P[]/eqP->.
all: rewrite ?eqxx // ?[equiv_of _ (inr _) _]equiv_of_sym => _.
all: try solve [apply: (@sub_equiv_of _ _ (inl _));
by rewrite /par2_eq -?Eio2 !eqxx].
by rewrite equiv_of_sym.
- case/connectP=> p. elim: p x; first by [move=> x _ ->; exact: par2_eqv_refl].
move=> /= a p IH x /andP[x_a p_path p_last].
have {p_path p_last} : par2_eqv a y by exact: IH. apply: par2_eqv_trans.
move: x a x_a => [x|x] [a|a] //=; first rewrite orbF.
all: case/orP=> /andP[/eqP-> /eqP->].
all: by rewrite ?par2_eqv_io // par2_eqv_sym par2_eqv_io.
Qed.
Lemma par2_eqv_ii x y :
x = g_in :> G1 -> y = g_in :> G2 ->
par2_eqv (inl x) (inr y).
Proof.
move => -> ->. rewrite par2_equiv_of. apply: sub_equiv_of.
by rewrite /par2_eq !eqxx.
Qed.
Lemma par2_eqv_oo x y :
x = g_out :> G1 -> y = g_out :> G2 ->
par2_eqv (inl x) (inr y).
Proof.
move => -> ->. rewrite par2_equiv_of. apply: sub_equiv_of.
by rewrite /par2_eq !eqxx.
Qed.
Definition par2 :=
{| graph_of := merge (union G1 G2) par2_eqv ;
g_in := \pi_{eq_quot par2_eqv} (inl g_in);
g_out := \pi_{eq_quot par2_eqv} (inl g_out) |}.
Lemma par2_eqvP : admissible par2_eqv.
Proof using.
move=> x y. case/orP=> [/eqP|]; first by left. case: ifP; last by right.
rewrite !inE => _ /orP[]/eqP->; by right; rewrite subUset !sub1set !inE !eqxx.
Qed.
Lemma decomp_par2 (T1 T2 : forest) D1 D2 :
sdecomp T1 (sskeleton G1) D1 -> sdecomp T2 (sskeleton G2) D2 ->
width D1 <= 3 -> width D2 <= 3 ->
exists T D, [/\ sdecomp T (sskeleton (par2)) D & width D <= 3].
Proof using.
move => dec1 dec2 W1 W2.
case: (decomp_quot (e:= [equiv_rel of par2_eqv]) dec1 dec2 W1 W2 _ _).
- exact: par2_eqvP.
- pose P' : {set union G1 G2} := [set inl g_in; inl g_out].
apply: (@leq_trans #|P'|); last by rewrite cards2; by case (_ != _).
apply: (@leq_trans #|[set (\pi x : par2) | x in P']|); last exact: leq_imset_card.
apply: subset_leq_card.
apply/subsetP => ? /imsetP [x H1 ->]. case/setUP : H1 => H1; first case/setUP : H1 => H1.
* by rewrite mem_imset.
* move/set1P : H1 => ->. apply/imsetP. exists (inl g_in); first by rewrite !inE eqxx ?orbT.
apply/eqmodP. by rewrite equiv_sym /= par2_eqv_io.
* move/set1P : H1 => ->. apply/imsetP. exists (inl g_out); first by rewrite !inE eqxx ?orbT.
apply/eqmodP. by rewrite equiv_sym /= par2_eqv_io.
- move => T [D] [A B [t C]]. exists T. exists D. split => //.
apply/sdecomp_sskel. split => //.
exists t. by rewrite C !mem_imset // !inE ?eqxx ?orbT.
Qed.
Definition seq2_eqv : rel (union G1 G2) :=
fun x y => (x == y) || ([set x; y] == [set inl g_out; inr g_in]).
Definition seq2_eqv_refl : reflexive seq2_eqv.
Proof. by move=> ?; rewrite /seq2_eqv eqxx. Qed.
Lemma seq2_eqv_sym : symmetric seq2_eqv.
Proof. move=> x y. by rewrite /seq2_eqv [[set y; x]]setUC [y == x]eq_sym. Qed.
Definition seq2_eqv_trans : transitive seq2_eqv.
Proof using.
move=> y x z. rewrite /seq2_eqv.
case/altP: (x =P y) => [<-//|/= xNy Exy].
case/altP: (y =P z) => [<-|/= yNz Eyz]; first by rewrite Exy.
case/altP: (x =P z) => //= xNz.
have := eq_refl #|[set inl (@g_out G1); inr (@g_in G2)]|.
rewrite -{1}(setUid [set _; _]) -{1}(eqP Exy) -{1}(eqP Eyz).
rewrite set2C -setUUr (cardsU1 y) !cards2 !inE.
by rewrite (eq_sym y x) negb_or xNy yNz xNz.
Qed.
Canonical seq2_eqv_equivalence :=
EquivRel seq2_eqv seq2_eqv_refl seq2_eqv_sym seq2_eqv_trans.
Lemma seq2_eqv_io : seq2_eqv (inl g_out) (inr g_in).
Proof. by rewrite /seq2_eqv/=. Qed.
Definition seq2_eq : rel (union G1 G2) :=
[rel a b | (a == inl g_out) && (b == inr g_in)].
Lemma seq2_equiv_of : seq2_eqv =2 equiv_of seq2_eq.
Proof using.
move=> x y. apply/idP/idP.
- case/altP: (x =P y) => [<- _|xNy]; first exact: connect0.
rewrite /seq2_eqv (negbTE xNy) /= eqEcard subUset !sub1set !inE => /andP[H _].
case/andP: H xNy => /orP[]/eqP-> /orP[]/eqP->; rewrite ?eqxx // => _.
+ apply: sub_equiv_of. by rewrite /seq2_eq/= !eqxx.
+ rewrite equiv_of_sym. apply: sub_equiv_of. by rewrite /seq2_eq/= !eqxx.
- case/connectP=> p. elim: p x; first by [move=> x _ ->; exact: seq2_eqv_refl].
move=> /= a p IH x /andP[x_a p_path p_last].
have {p_path p_last} : seq2_eqv a y by exact: IH. apply: seq2_eqv_trans.
case/orP: x_a => /andP[/eqP-> /eqP->];
last rewrite seq2_eqv_sym; exact: seq2_eqv_io.
Qed.
Definition seq2 :=
{| graph_of := merge (union G1 G2) seq2_eqv ;
g_in := \pi_{eq_quot seq2_eqv} (inl g_in);
g_out := \pi_{eq_quot seq2_eqv} (inr g_out) |}.
Lemma seq2_eqvP : admissible seq2_eqv.
Proof.
move=> x y. case/orP => /eqP->; [by left | right].
by rewrite subUset !sub1set !inE !eqxx.
Qed.
Lemma decomp_seq2 (T1 T2 : forest) D1 D2 :
sdecomp T1 (sskeleton G1) D1 -> sdecomp T2 (sskeleton G2) D2 ->
width D1 <= 3 -> width D2 <= 3 ->
exists T D, [/\ sdecomp T (sskeleton seq2) D & width D <= 3].
Proof using.
move => dec1 dec2 W1 W2.
case: (decomp_quot (e:= [equiv_rel of seq2_eqv]) dec1 dec2 W1 W2 _ _).
- exact: seq2_eqvP.
- pose P' : {set union G1 G2} := [set inl g_in; inl g_out; inr g_out].
apply: (@leq_trans #|P'|); last apply cards3.
apply: (@leq_trans #|[set (\pi x : seq2) | x in P']|); last exact: leq_imset_card.
apply: subset_leq_card.
apply/subsetP => ? /imsetP [x H1 ->]. move: H1.
rewrite /P -!setUA [[set _;_]]setUC !setUA. case/setUP => H1.
* by rewrite mem_imset.
* move/set1P : H1 => ->. apply/imsetP. exists (inl g_out); first by rewrite !inE eqxx ?orbT.
apply/eqmodP. by rewrite equiv_sym /= seq2_eqv_io.
- move => T [D] [A B [t C]]. exists T. exists D. split => //.
apply/sdecomp_sskel. split => //.
exists t. by rewrite C !mem_imset // !inE ?eqxx ?orbT.
Qed.
End Quotients.
Definition cnv2 (G : graph2) :=
{| graph_of := G; g_in := g_out; g_out := g_in |}.
Lemma decomp_cnv (G : graph2) T D :
sdecomp T (sskeleton G) D -> sdecomp T (sskeleton (cnv2 G)) D.
Proof.
move/sdecomp_sskel => [dec cmp]. apply/sdecomp_sskel; split => //.
move: cmp => [t] H. exists t => /=. by rewrite andbC.
Qed.
Definition dom2 (G : graph2) :=
{| graph_of := G; g_in := g_in; g_out := g_in |}.
Lemma decomp_dom (G : graph2) T D :
sdecomp T (sskeleton G) D -> sdecomp T (sskeleton (dom2 G)) D.
Proof.
move/sdecomp_sskel => [dec cmp]. apply/sdecomp_sskel; split => //.
move: cmp => [t] /andP [H _]. exists t => /=. by rewrite !H.
Qed.
Definition triv_decomp (G : sgraph) :
sdecomp tunit G (fun _ => [set: G]).
Proof.
split => [x|e|x [] [] _ _]; try by exists tt; rewrite !inE.
exact: connect0.
Qed.
Notation vfun := (fun x : void => match x with end).
Definition unit_graph := @Graph [finType of unit] _ vfun vfun vfun.
Definition one2 := {| graph_of := unit_graph; g_in := tt; g_out := tt |}.
Definition two_graph := @Graph [finType of bool] _ vfun vfun vfun.
Definition top2 := {| graph_of := two_graph; g_in := false; g_out := true |}.
Definition edge_graph (a : sym) :=
Graph (fun _ : unit => false) (fun _ => true) (fun _ => a).
Definition sym2 a := {| graph_of := edge_graph a; g_in := false; g_out := true |}.
Lemma decomp_small (G : graph2) : #|G| <= 3 ->
exists T D, [/\ sdecomp T (sskeleton G) D & width D <= 3].
Proof.
exists tunit; exists (fun => setT). split.
- exact: triv_decomp.
- by rewrite /width (big_pred1 tt _) // cardsT.
Qed.
Inductive term :=
| tmA of sym
| tm1
| tmT
| tmC of term
| tmS of term & term
| tmI of term & term
| tmD of term
.
Fixpoint graph_of_term (u:term) {struct u} : graph2 :=
match u with
| tmA a => sym2 a
| tm1 => one2
| tmT => top2
| tmC u => cnv2 (graph_of_term u)
| tmS u v => seq2 (graph_of_term u) (graph_of_term v)
| tmI u v => par2 (graph_of_term u) (graph_of_term v)
| tmD u => dom2 (graph_of_term u)
end.
Theorem graph_of_TW2 (u : term) :
exists T D, [/\ sdecomp T (sskeleton (graph_of_term u)) D & width D <= 3].
Proof.
elim: u => [a| | | u IHu | u IHu v IHv | u IHu v IHv | u IHu ].
- apply: decomp_small. by rewrite card_bool.
- apply: decomp_small. by rewrite card_unit.
- apply: decomp_small. by rewrite card_bool.
- move: IHu => [T] [D] [D1 D2]. exists T. exists D. split => //.
exact: decomp_cnv.
- move: IHu IHv => [T1] [D1] [? ?] [T2] [D2] [? ?].
simpl graph_of_term. exact: (decomp_seq2 (D1 := D1) (D2 := D2)).
- move: IHu IHv => [T1] [D1] [? ?] [T2] [D2] [? ?].
simpl graph_of_term. exact: (decomp_par2 (D1 := D1) (D2 := D2)).
- move: IHu => [T] [D] [D1 D2]. exists T. exists D. split => //.
exact: decomp_dom.
Qed.
Lemma sskel_K4_free (u : term) : K4_free (sskeleton (graph_of_term u)).
Proof.
case: (graph_of_TW2 u) => T [B] [B1 B2].
exact: TW2_K4_free B1 B2.
Qed.
Lemma skel_K4_free (u : term) : K4_free (skeleton (graph_of_term u)).
Proof.
apply: minor_K4_free (@sskel_K4_free u).
exact: sub_minor (skel_sub _).
Qed.