Require Import Setoid Morphisms.
From mathcomp Require Import all_ssreflect.
(* Note: ssrbool is empty and shadows Coq.ssr.ssrbool, use Coq.ssrbool for "Find" *)
Require Import edone preliminaries set_tac.
Require Import digraph sgraph treewidth minor connectivity.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Set Bullet Behavior "Strict Subproofs".
From mathcomp Require Import all_ssreflect.
(* Note: ssrbool is empty and shadows Coq.ssr.ssrbool, use Coq.ssrbool for "Find" *)
Require Import edone preliminaries set_tac.
Require Import digraph sgraph treewidth minor connectivity.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Set Bullet Behavior "Strict Subproofs".
Ltac notHyp b ::= assert_fails (assert b by assumption).
Prenex Implicits vseparator.
Implicit Types G H : sgraph.
Arguments sdecomp : clear implicits.
Arguments rename_decomp [T G H D].
Lemma connectedI_clique (G : sgraph) (A B S : {set G}) :
connected A -> clique S ->
(forall x y (p : Path x y), p \subset A -> x \in B -> y \notin B ->
exists2 z, z \in p & z \in S :&: B) ->
connected (A :&: B).
Proof.
move => conA clS H x y /setIP [X1 X2] /setIP [Y1 Y2].
case: (altP (x =P y)) => [->|xDy]; first exact: connect0.
case/uPathRP : (conA _ _ X1 Y1) => // p Ip subA.
case: (boolP (p \subset B)) => subB.
- apply connectRI with p => z zp. by clean_mem;set_tac.
- case/subsetPn : subB => z Z1 Z2.
gen have C,Cx : x y p Ip subA X1 X2 Y1 Y2 Z1 Z2 {xDy} /
exists2 s, s \in S :&: A :&: B & connect (restrict (mem (A :&: B)) sedge) x s.
{ case: (split_at_first (A := [predC B]) Z2 Z1) => u' [p1] [p2] [P1 P2 P3].
subst p. case/irred_catE : Ip => Ip1 Ip2 Ip.
case/splitR : (p1); first by apply: contraNneq P2 => <-.
move => u [p1'] [uu'] E. subst p1.
have uB : u \in B. apply: contraTT (uu') => C. by rewrite [u]P3 ?sgP // !inE.
exists u. case: (H _ _ (edgep uu')) => //.
- apply: subset_trans subA.
apply: subset_trans (subset_pcatL _ _). exact: subset_pcatR.
- move => ?. rewrite !inE mem_edgep. case/orP => /eqP-> /andP[U1 U2].
+ by rewrite U1 U2 (subsetP subA) // !inE.
+ by rewrite !inE U2 in P2.
- apply connectRI with p1' => v Hv.
rewrite !inE (subsetP subA) ?inE ?Hv //=.
move: Ip1. rewrite irred_edgeR andbC => /andP [Ip1].
apply: contraNT => C. by rewrite -(P3 v) // !inE Hv. }
case: Cx => s. rewrite !inE -andbA => /and3P [S1 S2 S3 S4].
case: (C _ _ (prev p)); rewrite ?mem_prev ?irred_rev //.
+ apply: subset_trans subA. apply/subsetP => ?. by rewrite !inE.
+ move => t. rewrite !inE -andbA => /and3P [T1 T2 T3 T4].
apply: connect_trans S4 _. rewrite srestrict_sym.
apply: connect_trans T4 _. case: (altP (t =P s)) => [-> //|E].
apply: connect1 => /=. by rewrite !inE clS.
Qed.
Lemma separation_K4side G (V1 V2 : {set G}) :
separation V1 V2 -> clique (V1 :&: V2) -> #|V1 :&: V2| <= 2 ->
minor G K4 ->
exists2 phi : K4 -> {set G}, minor_rmap phi &
(forall x, phi x \subset V1) \/ (forall x, phi x \subset V2).
Proof.
move => sepV clV12 cardV12 /minorRE [phi] [P1 P2 P3 P4].
wlog/forallP cutV1 : V1 V2 sepV clV12 cardV12 / [forall x, phi x :&: V1 != set0].
{ move => W.
case: (boolP [forall x, phi x :&: V1 != set0]) => A; first exact: (W V1 V2).
case: (boolP [forall x, phi x :&: V2 != set0]) => B.
{ setoid_rewrite <- or_comm. by apply: W; rewrite 1?setIC // separation_sym. }
case: notF. case/forallPn : A => i /negPn Hi. case/forallPn : B => j /negPn Hj.
case: (altP (i =P j)) => [E|E].
- subst j. case/set0Pn : (P1 i) => x Hx. case/setUP : (sepV.1 x) => Hx'.
+ move/eqP/setP/(_ x) : Hi. by rewrite !inE Hx Hx'.
+ move/eqP/setP/(_ x) : Hj. by rewrite !inE Hx Hx'.
- move/neighborP : (P4 i j E) => [x] [y] [A B]. rewrite sgP sepV //.
apply: contraTN Hj => Hy. by apply/set0Pn; exists y; rewrite inE B.
apply: contraTN Hi => Hx. by apply/set0Pn; exists x; rewrite inE A. }
set S := V1 :&: V2 in clV12 cardV12.
have phiP i y : y \in phi i -> y \notin V1 -> phi i :&: S != set0.
{ case/set0Pn : (cutV1 i) => x /setIP [xpi xV1 ypi yV1].
case: (boolP (x \in V2)) => xV2; first by apply/set0Pn; exists x; rewrite !inE.
case/uPathRP : (P2 i x y xpi ypi); first by apply: contraNneq yV1 => <-.
move => p Ip subP.
have [_ _ /(_ p)] := separation_separates sepV xV2 yV1.
case => z /(subsetP subP) => ? ?. apply/set0Pn; exists z. by rewrite /S inD. }
pose phi' (i : K4) := phi i :&: V1.
exists phi'; first split.
- move => i. exact:cutV1.
- move => i. apply connectedI_clique with S => //.
+ move => x y p sub_phi Hx Hy. case: (boolP (x \in V2)) => Hx'.
* exists x => //. by rewrite /S inD.
* have [_ _ /(_ p) [z ? ?]] := (separation_separates sepV Hx' Hy).
exists z => //. by rewrite /S inD.
- move => i j /P3 => D. apply: disjointW D; exact: subsetIl.
- move => i j ij. move/P4/neighborP : (ij) => [x] [y] [H1 H2 H3].
have S_link u v : u \in S -> v \in S -> u \in phi i -> v \in phi j -> u -- v.
{ have D: [disjoint phi i & phi j] by apply: P3; rewrite sg_edgeNeq.
(* TOTHINK: make set_tac use/prove x == y or x != u. *)
move => H *. apply: clV12 => //. by apply: contraTneq H => ?; set_tac. }
have/subsetP subV : S \subset V1 by exact: subsetIl.
have inS u v : u -- v -> u \in V1 -> v \notin V1 -> u \in S.
{ move => uv HVu HVv. apply: contraTT uv => /= C. subst S.
by rewrite sepV // notinD. }
apply/neighborP. case: (boolP (x \in V1)) => HVx; case: (boolP (y \in V1)) => HVy.
+ exists x; exists y. by rewrite !inE HVx HVy.
+ case/set0Pn : (phiP _ _ H2 HVy) => s /setIP [S1 S2].
exists x; exists s. rewrite !inE H1 HVx S1 S_link // ?subV //. exact: inS HVy.
+ case/set0Pn : (phiP _ _ H1 HVx) => s /setIP [S1 S2].
exists s; exists y. rewrite !inE H2 HVy S1 S_link // ?subV //.
apply: inS HVx => //. by rewrite sgP.
+ case/set0Pn : (phiP _ _ H1 HVx) => s /setIP [S1 S2].
case/set0Pn : (phiP _ _ H2 HVy) => s' /setIP [S3 S4].
exists s; exists s'. by rewrite !inE S1 S3 S_link // !subV.
- left => x. exact: subsetIr.
Qed.
Lemma subsetIlP1 (T : finType) (A B : pred T) x :
reflect (forall y, y \in A -> y \in B -> y = x) ([predI A & B] \subset pred1 x).
Proof.
apply: (iffP subsetP) => [H y H1 H2|H y /andP [/= H1 H2]].
- by rewrite [y](eqP (H _ _ )) ?inE ?H1 ?H2.
- by rewrite inE [y]H.
Qed.
Arguments subsetIlP1 {T A B x}.
Lemma predIpcatR (G : sgraph) (x y z : G) (p : Path x y) (q : Path y z) (S A : pred G) :
[predI pcat p q & S] \subset A -> [predI q & S] \subset A.
Proof.
move/subsetP => H. apply/subsetP => u /andP [/= H1 H2].
apply: H. by rewrite !inE H1 H2.
Qed.
Lemma K4_of_paths (G : sgraph) x y s0 s1' (p0 p1 p2 : Path x y) (q1 : Path s0 s1') :
x!=y -> independent p0 p1 -> independent p0 p2 -> independent p1 p2 ->
s0 \in interior p0 -> s1' \in interior p1 ->
irred p0 -> irred p1 -> irred p2 -> irred q1 ->
[disjoint q1 & [set x; y]] ->
(forall z' : G, z' \in [predU interior p1 & interior p2] -> z' \in q1 -> z' = s1') ->
minor G K4.
Proof.
move => xDy ind01 ind02 ind12 sp0 in_p1 Ip0 Ip1 Ip2 Iq av_xy s1'firstp12.
pose phi (i : K4) := match i with
| Ordinal 0 _ => [set x]
| Ordinal 1 _ => interior p0 :|: interior q1
| Ordinal 2 _ => interior p1
| Ordinal 3 _ => y |: interior p2
| Ordinal p n => set0
end.
suff: minor_rmap phi by apply minor_of_rmap.
split.
- move => [m i]. case m as [|[|[|[|m]]]] => //=; apply /set0Pn.
+ exists x. by set_tac.
+ exists (s0). by rewrite inE sp0.
+ by exists s1'.
+ exists y. by set_tac.
- move => [m i]. case m as [|[|[|[|m]]]] => //=.
+ exact: connected1.
+ case: (altP (interior q1 =P set0)) => [->|H].
* rewrite setU0. exact: connected_interior.
* apply: neighbor_connected; try exact: connected_interior.
exact: path_neighborL.
+ exact: connected_interior.
+ exact: connected_interiorR.
- move => i j iNj. wlog iltj: i j {iNj} / i < j.
{ move => H. rewrite /= neq_ltn in iNj.
move: iNj => /orP [iltj|jlti]; [|rewrite disjoint_sym]; exact: H. }
destruct i as [m i]. destruct j as [n j].
case m as [|[|[|[|m]]]] => //=; case n as [|[|[|[|m']]]] => //=.
+ rewrite disjoints1. rewrite inE negb_or /interior notinD /=.
have: (x \in [set x; y]); by set_tac.
+ rewrite disjoints1. by rewrite /interior; set_tac.
+ rewrite disjoints1. by rewrite /interior; set_tac.
+ apply: disjointsU => //. apply/disjointP => z Z1 Z2.
suff: z = s1' by move: Z1 Z2; rewrite /interior; set_tac.
apply: s1'firstp12. by rewrite inE /= Z2. exact: interiorW.
+ apply: disjointsU => //.
* rewrite disjoint_sym. apply: disjointsU.
-- rewrite /interior. apply/disjointP; by set_tac.
-- by rewrite disjoint_sym.
* rewrite disjoint_sym. apply: disjointsU.
-- apply/disjointP. rewrite /interior. have: (y \in [set x; y]); by set_tac.
-- apply/disjointP => z Z1 Z2.
suff: z = s1' by move: Z1 Z2; rewrite /interior; set_tac.
apply: s1'firstp12. by rewrite inE /= Z1. exact: interiorW.
+ rewrite disjoint_sym. apply: disjointsU.
* rewrite disjoints1 /interior. by set_tac.
* by rewrite disjoint_sym.
- move => i j iNj. wlog iltj: i j {iNj} / i < j.
{ move => H. rewrite /edge_rel /= neq_ltn in iNj.
move: iNj => /orP [iltj|jlti]; [|rewrite neighborC]; exact: H. }
destruct i as [m i]. destruct j as [n j].
(* Hints for automation *)
have [[? ?] ?] := (valP (p0),valP p1, valP p2).
case m as [|[|[|[|m]]]] => //=; case n as [|[|[|[|m']]]] => //=.
+ apply: neighborUl. apply: path_neighborL => //; by set_tac.
+ apply: path_neighborL => //; by set_tac.
+ exact: neighbor_interiorL.
+ case: (altP (interior q1 =P set0)) => [E|H].
* rewrite E setU0. apply/neighborP; exists (s0); exists s1'. split => //.
case/interior0E : E => //. apply: contraTneq ind01.
rewrite /independent; set_tac.
* rewrite neighborC. apply: neighborUr. exact: path_neighborR.
+ apply: neighborUl. rewrite neighborC. apply: neighborUl.
apply: path_neighborR => //; by set_tac.
+ apply: neighborUl. rewrite neighborC. apply: path_neighborR => //; by set_tac.
Qed.
Lemma K4_of_vseparators (G : sgraph) :
3 < #|G| -> (forall S : {set G}, vseparator S -> 2 < #|S|) -> minor G K4.
Proof.
move => G4elt minsep3.
case: (boolP (cliqueb [set: G])) => [|/cliquePn [x] [y] [_ _ xNy xNEy]].
{ move/cliqueP. apply: minor_of_clique. by rewrite cardsT. }
have minsep_xy S : separates x y S -> 3 <= #|S|.
{ move => A. apply: minsep3. by exists x; exists y. }
case: (theta xNEy xNy minsep_xy) => p ind_p.
case: (theta_vertices p xNy xNEy) => s Hs.
(* name p1 and p2 (plus assumptions) because we will need to generalize over them *)
pose p1 := p ord1. pose p2 := p ord2.
pose s1 := s ord1. pose s2 := s ord2.
have ind12 : independent p1 p2 by apply: ind_p.
have ind01 : independent (p ord0) p1 by apply: ind_p.
have ind02 : independent (p ord0) p2 by apply: ind_p.
have sp1 : s1 \in interior p1 by rewrite Hs.
have sp2 : s2 \in interior p2 by rewrite Hs.
case (@avoid_nonseperator G [set x; y] (s ord0) (s1)) => //; try (apply: interiorN; eauto).
{ move/minsep3. by rewrite cards2 xNy. }
move => q Iq av_xy.
case: (@split_at_first G [predU interior p1 & interior p2] (s ord0) s1 q s1) => //.
{ by rewrite inE /= sp1. }
move => s1' [q1 [q2 [catp s1'p12 s1'firstp12]]].
subst q. case/irred_catE : Iq => Iq _ _.
have {av_xy} av_xy : [disjoint q1 & [set x; y]] by apply/disjointP => z; set_tac.
wlog in_p1: p1 p2 s1 s2 ind01 ind02 ind12 sp1 {sp2} {q2 s1'p12} s1'firstp12 / s1' \in interior p1.
{ move => W. case/orP: (s1'p12) => /= [s1'p1|s1'p2].
- by apply W with p1 p2 s1.
- apply W with p2 p1 s2 => //. by apply: independent_sym.
move => z' H1 H2. apply s1'firstp12 => //. move: H1. by rewrite !inE orbC. }
apply K4_of_paths with x y (s ord0) s1' (p ord0) p1 p2 q1 => //; exact: valP.
Qed.
Lemma no_K4_smallest_vseparator (G : sgraph) :
~ minor G K4 -> #|G| <= 3 \/ (exists S : {set G}, smallest vseparator S /\ #|S| <= 2).
Proof.
move => HM. case (boolP (3 < #|G|)) => sizeG; last by rewrite leqNgt; left.
right. case: (boolP ([exists (S : {set G} | #|S| <= 2), vseparatorb S])).
- case/exists_inP => /= S sizeS sepS.
case (@ex_smallest _ (@vseparatorb G) (fun a => #|a|) S sepS) => U /vseparatorP sepU HU.
exists U. repeat split => //.
+ move => V /vseparatorP. exact: HU.
+ move: (HU S sepS) => ?. exact: leq_trans sizeS.
- move/exists_inPn => H. exfalso. apply HM. apply K4_of_vseparators => //.
move => S. move: (H S). rewrite unfold_in (rwP (vseparatorP _)) => H'.
apply: contraTT. by rewrite ltnNge negbK.
Qed.
Lemma rmap_disjE (G H : sgraph) (phi : H -> {set G}) x i j :
minor_rmap phi -> x \in phi i -> x \in phi j -> i=j.
Proof.
move => [_ _ map _] xi. apply contraTeq => iNj.
by erewrite (disjointFr (map _ _ iNj)).
Qed.
If minor (add_edge s1 s2) K4 but K4_free G, then the
additional edge must be used eihter to connect two different
inflations or ensure connectedness of one of the inflations
Lemma cases_without_edge (G : sgraph) (s1 s2 : G) phi:
K4_free G -> (@minor_rmap (add_edge s1 s2) K4 phi) ->
(exists i j, [/\ s1 \in phi i, s2 \in phi j & i != j]) \/
exists i, [/\ s1 \in phi i, s2 \in phi i & ~ @connected G (phi i)].
Proof.
move => K4F_G phi_map.
case (boolP ([exists i, s1 \in phi i] && [exists j, s2 \in phi j])).
- (* s1 and s2 appear in some bags *)
move => /andP [/existsP [i s1i] /existsP [j s2j]].
case (altP (i=Pj)) => [?|]; last by move => ?; left; exists i; exists j.
(* s1 s2 in same bag *)
subst j. case (boolP (@connectedb G (phi i))).
+ (* phi i connected without using s1 -- s2, so find minor *)
have disjE := rmap_disjE phi_map.
case: phi_map => [map0 map1 map2 map3].
move/connectedP => coni.
suff H: @minor_rmap G K4 phi by case: K4F_G; exact: minor_of_rmap H.
split => //.
* move => x. case: (altP (x =P i)) => [->//|xNi].
apply add_edge_keep_connected_l with s1 s2 => //.
apply: contraNN xNi => ?. by rewrite (disjE s1 x i).
* move => i' j' i'j'. wlog H : i' j' i'j' / j' != i.
{ move => W. case: (altP (j' =P i)) => [E|]; last by apply: W.
rewrite neighborC W 1?sgP //. apply: contraTneq i'j' => ->.
by rewrite E sgP. }
apply: neighbor_del_edgeR (map3 _ _ i'j');
apply: contraNN H => H; by rewrite ?(disjE _ _ _ s1i H) ?(disjE _ _ _ s2j H).
+ (* bag not connected *)
move/connectedP => nconi. right. by exists i.
- (* either s1 or s2 is not in any bag *) (* so find minor *)
rewrite negb_and !negb_exists => H.
suff HH: @minor_rmap G K4 phi by case: K4F_G; exact: minor_of_rmap HH.
wlog H : s1 s2 phi phi_map {H} / forall x, s1 \notin phi x.
{ move => W. case/orP : H => /forallP; first exact: W.
apply: (W s2 s1). exact: rmap_add_edge_sym. }
case: phi_map => [map0 map1 map2 map3]; split => //.
+ move => x. exact: add_edge_keep_connected_l.
+ move => i j ij. exact: neighbor_del_edge1 (map3 _ _ ij).
Qed.
Lemma add_edge_separation (G : sgraph) V1 V2 s1 s2:
@separation G V1 V2 -> s1 \in V1:&:V2 -> s2 \in V1:&:V2 ->
@separation (add_edge s1 s2) V1 V2.
Proof.
move => sep s1S s2S. split; first by move => x; apply sep.
move => x1 x2 x1V2 x2V1 /=. rewrite /edge_rel/= sep //=.
apply: contraTF isT. case/orP => [] /and3P[_ /eqP ? /eqP ?]; by set_tac.
Qed.
K4_free G -> (@minor_rmap (add_edge s1 s2) K4 phi) ->
(exists i j, [/\ s1 \in phi i, s2 \in phi j & i != j]) \/
exists i, [/\ s1 \in phi i, s2 \in phi i & ~ @connected G (phi i)].
Proof.
move => K4F_G phi_map.
case (boolP ([exists i, s1 \in phi i] && [exists j, s2 \in phi j])).
- (* s1 and s2 appear in some bags *)
move => /andP [/existsP [i s1i] /existsP [j s2j]].
case (altP (i=Pj)) => [?|]; last by move => ?; left; exists i; exists j.
(* s1 s2 in same bag *)
subst j. case (boolP (@connectedb G (phi i))).
+ (* phi i connected without using s1 -- s2, so find minor *)
have disjE := rmap_disjE phi_map.
case: phi_map => [map0 map1 map2 map3].
move/connectedP => coni.
suff H: @minor_rmap G K4 phi by case: K4F_G; exact: minor_of_rmap H.
split => //.
* move => x. case: (altP (x =P i)) => [->//|xNi].
apply add_edge_keep_connected_l with s1 s2 => //.
apply: contraNN xNi => ?. by rewrite (disjE s1 x i).
* move => i' j' i'j'. wlog H : i' j' i'j' / j' != i.
{ move => W. case: (altP (j' =P i)) => [E|]; last by apply: W.
rewrite neighborC W 1?sgP //. apply: contraTneq i'j' => ->.
by rewrite E sgP. }
apply: neighbor_del_edgeR (map3 _ _ i'j');
apply: contraNN H => H; by rewrite ?(disjE _ _ _ s1i H) ?(disjE _ _ _ s2j H).
+ (* bag not connected *)
move/connectedP => nconi. right. by exists i.
- (* either s1 or s2 is not in any bag *) (* so find minor *)
rewrite negb_and !negb_exists => H.
suff HH: @minor_rmap G K4 phi by case: K4F_G; exact: minor_of_rmap HH.
wlog H : s1 s2 phi phi_map {H} / forall x, s1 \notin phi x.
{ move => W. case/orP : H => /forallP; first exact: W.
apply: (W s2 s1). exact: rmap_add_edge_sym. }
case: phi_map => [map0 map1 map2 map3]; split => //.
+ move => x. exact: add_edge_keep_connected_l.
+ move => i j ij. exact: neighbor_del_edge1 (map3 _ _ ij).
Qed.
Lemma add_edge_separation (G : sgraph) V1 V2 s1 s2:
@separation G V1 V2 -> s1 \in V1:&:V2 -> s2 \in V1:&:V2 ->
@separation (add_edge s1 s2) V1 V2.
Proof.
move => sep s1S s2S. split; first by move => x; apply sep.
move => x1 x2 x1V2 x2V1 /=. rewrite /edge_rel/= sep //=.
apply: contraTF isT. case/orP => [] /and3P[_ /eqP ? /eqP ?]; by set_tac.
Qed.
TODO: simplify below ...
Definition component_in G (A : {set G}) s :=
[set z in A | connect (restrict (mem A) sedge) s z].
Lemma add_edge_split_connected (G :sgraph) (s1 s2 : G) (A : {set G}):
connected (A : {set add_edge s1 s2}) -> s1 \in A -> s2 \in A ->
forall (x : G), x \in A -> x \in component_in A s1 \/ x \in component_in A s2.
Proof.
move => conA s1A s2A x xA. case: (altP (s1 =P x)) => [->|s1Nx].
{ left. by rewrite inE connect0. }
case/PathRP: (conA s1 x s1A xA) => // p subA.
case: (@split_at_last (@add_edge G s1 s2) (mem [set s1; s2]) s1 x p s1);
try by rewrite ?inE ?eqxx.
move => z [p1 [p2 [catp zS Hlast]]].
suff HH: x \in component_in A z.
{ case/setUP : zS => /set1P <-; rewrite HH; by auto. }
case: (@lift_Path_on _ _ (fun (v : G) => (v : add_edge s1 s2)) z x p2 ) => //.
- move => u v up vp /=. case/or3P => //.
+ case/and3P => [E /eqP ? /eqP ?]; subst.
by rewrite [s1]Hlast 1?[s2]Hlast ?inE ?eqxx in E.
+ case/and3P => [E /eqP ? /eqP ?]; subst.
by rewrite [s1]Hlast 1?[s2]Hlast ?inE ?eqxx in E.
- move => a ap1. rewrite mem_map // mem_enum //.
- move => p3 t1 _. rewrite inE xA. apply connectRI with p3 => a.
rewrite mem_path -[_ p3]map_id t1 -(mem_path p2).
(* TODO: this should be autmatable *)
subst. move => H. apply: (subsetP subA). exact: (subsetP (subset_pcatR _ _)).
Qed.
Lemma add_edge_split_disjoint (G :sgraph) (s1 s2 : G) (A : {set add_edge s1 s2}):
connected A -> s1 \in A -> s2 \in A -> ~ @connected G A ->
[disjoint (component_in (A : {set G}) s1) & (component_in (A : {set G}) s2)].
Proof.
move => conA s1A s2A nconA. apply /disjointP => z.
rewrite !inE => /andP [_ ps1z] /andP [_ ps2z].
apply nconA. move => a b ai bi.
have cons1s2: @connect G (@restrict G (mem A) sedge) s1 s2.
{ rewrite srestrict_sym in ps2z. apply connect_trans with z => //. }
case: (add_edge_split_connected conA s1A s2A bi); rewrite inE => /andP [_ bC];
[apply connect_trans with s1 |apply connect_trans with s2] => //; rewrite srestrict_sym.
all: case: (add_edge_split_connected conA s1A s2A ai);
rewrite inE => /andP [_ aC];
[apply connect_trans with s1|apply connect_trans with s2] => //=.
by rewrite srestrict_sym.
Qed.
(* This lemma is the core of the construction of tree decompositions
for K4-free graphs. *)
Lemma K4_free_add_edge_sep_size2 (G : sgraph) (s1 s2 : G):
K4_free G -> smallest vseparator [set s1; s2] -> s1 != s2 -> K4_free (add_edge s1 s2).
Proof.
move S12 : [set s1;s2] => S. move/esym in S12. move => K4free ssepS s1Ns2 K4G'.
case: (vseparator_separation ssepS.1) => V1 [V2] [psep SV12].
wlog [phi rmapphi HphiV1] : {K4G'} V1 V2 psep SV12 / exists2 phi : K4 -> {set add_edge s1 s2},
minor_rmap phi & forall x : K4, phi x \subset V1.
{ move => W. case: (@separation_K4side (add_edge s1 s2) V1 V2) => //.
- apply: add_edge_separation psep.1 _ _; by rewrite -SV12 S12 !inE eqxx.
- rewrite -SV12 S12. apply: clique2. by rewrite /edge_rel/= !eqxx s1Ns2.
- by rewrite -SV12 S12 cards2 s1Ns2.
- move => phi map_phi [subV1|subV2]; first by apply: (W V1 V2) => //; exists phi.
apply: (W V2 V1) => //; rewrite 1?proper_separation_symmetry 1?setIC //.
by exists phi. }
apply K4free. rewrite SV12 in S12.
(* case A : s1 and s2 in different bags
we generalize over s1,s2 and phi, so that case B reduces to this case. *)
gen have caseA: s1 s2 s1Ns2 S12 phi rmapphi HphiV1 /
(exists i j : K4, [/\ s1 \in phi i, s2 \in phi j & i != j]) -> minor G K4.
{ move => [i [j [s1i s2j iNj]]]. rewrite SV12 in ssepS.
(* s1 as a neighbour z \notin V1 *)
case: (@svseparator_neighbours _ _ _ s1 psep ssepS) => [|_ [z [_ zNV1 _ s1z]]].
{ by rewrite S12 !inE eqxx. }
(* path from z to s2 avoiding s1 *)
have [p irp dis] : exists2 p : Path z s2, irred p & [disjoint p & [set s1]].
{ apply: (@avoid_nonseperator G [set s1] z s2).
- apply: below_smallest ssepS _. by rewrite S12 cards1 cards2 s1Ns2.
- by rewrite inE eq_sym ?(sg_edgeNeq s1z).
- by rewrite inE eq_sym. }
rewrite disjoint_sym disjoints1 in dis.
(* path included in V2 *)
have pV2: p \subset V2.
{ apply: contraTT isT => /subsetPn [z' z'p z'NV2].
case/psplitP: _ / z'p irp dis => {p} [p1 p2] /irred_catE [_ _ Ip] s1p.
move/proper_separation_symmetry in psep.
case: (separation_separates psep.1 zNV1 z'NV2) => _ _ /(_ p1) [s S1 S2].
rewrite -(Ip s2) // in z'NV2; by set_tac. }
(* phi' := phij := phi j :|: p *)
pose phi' (k : K4) := if k==j then phi j :|: [set a in p] else phi k .
suff HH: @minor_rmap G K4 phi' by apply: minor_of_rmap HH.
have disjE := (rmap_disjE rmapphi).
destruct rmapphi as [map0 map1 map2 map3].
rewrite /phi'. split => [x|x|x y xNy|x y xy].
+ case: (altP (x =P j)) => xj //=. apply /set0Pn. exists s2. by rewrite !inE.
+ case: (altP (x =P j)) => xj.
* apply connectedU_common_point with s2 => //. by rewrite !inE.
-- apply add_edge_keep_connected_l => //.
apply: contraNN iNj => s1x. by rewrite (disjE s1 i j s1i s1x).
-- by apply connected_path.
* apply (@add_edge_keep_connected_l G s2 s1) => //. (* TODO: _r variant *)
-- by apply add_edge_connected_sym.
-- apply: contraNN xj => s1x. by rewrite (disjE s2 x j s1x s2j).
+ wlog yNj: x y xNy / y!=j.
{ move => H. case: (boolP (y==j)) => yj //=.
- rewrite eq_sym in xNy. case: (altP (x=Pj)) => xj //=.
+ subst x. contrab.
+ move: (H y x xNy xj). rewrite (negbTE xj) yj => ?. by rewrite disjoint_sym.
- move: (H x y xNy yj). by rewrite (negbTE yj). }
rewrite (negbTE yNj). case: (altP (x=Pj)) => ? //=; [ subst x | by apply map2].
rewrite disjointsU ?map2 //. apply /disjointP => a ap ay. rewrite inE in ap.
have/setU1P[H|H] : a \in [set s1; s2] by move: (HphiV1 y); set_tac.
- by subst; contrab.
- move: (map2 _ _ xNy). by set_tac.
+ wlog yNj: x y xy / y!=j.
{ move => H. case: (boolP (y==j)) => yj //=.
- simpl in xy. rewrite /edge_rel/= eq_sym in xy. case: (altP (x =P j)) => xj //=.
+ subst x. contrab.
+ move: (H y x xy xj). by rewrite (negbTE xj) yj neighborC.
- move: (H x y xy yj). by rewrite (negbTE yj). }
rewrite (negbTE yNj). case: (altP (x =P j)) => xj.
* subst x. case: (altP (y =P i)) => yi.
-- subst y. apply/neighborP; exists z. exists s1. split => //; by rewrite ?inE // sgP.
-- apply: (neighborW G (phi j) (phi y)); rewrite ?subsetUl //.
move: (map2 _ _ yi) (map2 _ _ yNj) => *.
apply: neighbor_del_edgeR (map3 _ _ xy); by set_tac.
* move: (map2 _ _ xj) (map2 _ _ yNj) => *.
apply: neighbor_del_edge2 (map3 _ _ xy); by set_tac. }
case: (cases_without_edge K4free rmapphi) => [twobags|onebag].
- apply caseA with s1 s2 phi => //.
- (* case B, s1 and s2 in same bag, not connected *)
move: onebag => [i [s1i s2i notconi]].
have disjE := (rmap_disjE rmapphi).
case: (rmapphi) => [_ map1 _ _].
(* phi i = component of s1 U component of s2 *)
move C_def : (component_in ((phi i) : {set G})) => C.
have I4inC12: phi i \subset C s1 :|: C s2.
{ apply/subsetP. rewrite -C_def => ? ?. apply/setUP.
by apply (add_edge_split_connected (map1 i) s1i s2i). }
have C1inphii: (C s1 : {set (add_edge s1 s2)}) \subset phi i.
{ rewrite -C_def /component_in setIdE. apply subsetIl. }
have C2inphii: (C s2 : {set (add_edge s1 s2)}) \subset phi i.
{ rewrite -C_def /component_in setIdE. apply subsetIl. }
have disC1C2: [disjoint (C s1) & (C s2)].
{ rewrite -C_def.
apply (add_edge_split_disjoint (map1 i) s1i s2i notconi). }
have conC1: @connected G (C s1).
{ rewrite -C_def. apply connected_restrict_in => //. }
have conC2: @connected G (C s2).
{ rewrite -C_def. apply connected_restrict_in => //. }
have/andP [s1C s2C] : (s1 \in C s1) && (s2 \in C s2).
{ by rewrite -C_def !inE s1i s2i !connect0. }
wlog [B1|B2]: s1 s2 s1Ns2 s1C s2C phi rmapphi {map1} HphiV1 s1i s2i notconi disjE C_def
I4inC12 C1inphii C2inphii S12 caseA disC1C2 conC1 conC2 /
(forall j, j != i -> neighbor (C s1) (phi j)) \/
( let G' := add_edge s1 s2 in
exists j, [/\ j != i, @neighbor G' (C s2) (phi j) & forall k, k \notin pred2 i j -> @neighbor G' (C s1) (phi k)]).
{ move => W. pose G' := add_edge s1 s2.
Notation NB G A B := (@neighbor G A B).
have s2Ns1 : s2 != s1 by rewrite eq_sym.
have rmapphi' := rmap_add_edge_sym rmapphi.
have I4inC21: phi i \subset C s2 :|: C s1. by rewrite setUC.
have disC2C1 : [disjoint C s2 & C s1] by rewrite disjoint_sym.
have S21 : V1 :&: V2 = [set s2; s1] by rewrite setUC.
case: (rmapphi) => {map1} [map0 map1 map2 map3].
have iP z : z != i -> (s1 \in phi z = false)*(s2 \in phi z = false).
{ move => Hz. by rewrite !(disjointFl (map2 _ _ Hz)). }
case (boolP [forall (j | j != i), NB G' (C s1) (phi j)]) => [|C1].
{ move/forall_inP => H. apply: (W s1 s2) => //.
left => j Hj. move/H : (Hj). apply: neighbor_del_edgeR; by rewrite !iP. }
case (boolP [forall (j | j != i), NB G' (C s2) (phi j)]) => [|C2].
{ move/forall_inP => H. apply (W s2 s1 s2Ns1 s2C s1C phi) => //.
left => j Hj. move/H : (Hj). apply: neighbor_del_edgeR; by rewrite !iP. }
case/forall_inPn : C1 => j2 Dj2 Nj2.
case/forall_inPn : C2 => j1 Dj1 Nj1. rewrite !unfold_in in Dj1 Dj2.
have NC A : neighbor A (phi i) -> @neighbor G' (C s1) A || @neighbor G' (C s2) A.
{ rewrite ![_ _ A] neighborC. exact: neighbor_split. }
have j1Dj2 : j1 != j2.
{ apply: contraNneq Nj2 => ?;subst j2.
move/NC : (map3 _ _ Dj2). by rewrite (negbTE Nj1) orbF. }
have {Nj2} Nj2 : NB G' (C s2) (phi j2).
{ move/NC : (map3 _ _ Dj2). by rewrite (negbTE Nj2). }
have {Nj1} Nj1 : NB G' (C s1) (phi j1).
{ move/NC : (map3 _ _ Dj1). by rewrite (negbTE Nj1) orbF. }
have [k Hk] : exists k, k \notin [:: i; j1;j2] by apply: ord_fresh.
move: Hk. rewrite !inE !negb_or => /and3P[Hk1 Hk2 Hk3].
have zP z : z \in [:: k;j1;j2;i].
{ by apply: ord_size_enum; rewrite //= !inE !negb_or Hk1 Hk2 Hk3 Dj1 Dj2 j1Dj2. }
case/NC/orP : (map3 _ _ Hk1) => [Ks1|Ks2].
- apply: (W s1 s2) => //.
right; exists j2.
split => // z. rewrite !inE negb_or => /andP[Z1 Z2]. move: (zP z).
rewrite !inE (negbTE Z1) (negbTE Z2) /= orbF. by case/orP=>/eqP->.
- apply: (W s2 s1) => //. exact: rmapphi'.
right. exists j1. rewrite neighbor_add_edgeC.
split => // z. rewrite !inE negb_or => /andP[Z1 Z2]. move: (zP z).
rewrite !inE (negbTE Z1) (negbTE Z2) /= orbF.
case/orP=>/eqP-> //; by rewrite neighbor_add_edgeC. }
+ (* case x1 x2 x3 in same component (wlog component of s1) *)
pose phi' (k : K4) := if k==i then C s1 else phi k .
suff HH: @minor_rmap G K4 phi' by apply (minor_of_map (minor_map_rmap HH)).
case: rmapphi => [map0 map1 map2 map3].
rewrite /phi'. split => [x|x|x y xNy|x y xy].
* case: (boolP (x==i)) => xi //=. apply/set0Pn; by exists s1.
* case: (boolP (x==i)) => xi //=.
apply: (@add_edge_keep_connected_l G s2 s1) => //.
-- rewrite add_edge_connected_sym. apply: map1.
-- apply: contraNN xi => s1x. by rewrite (disjE s2 x i s1x s2i).
* have disC1y: forall y, i!=y -> [disjoint C s1 & (phi y : {set G})].
{ move => y' y'Ni. apply: disjoint_transL (map2 _ _ y'Ni).
rewrite -C_def /component_in setIdE. exact: subsetIl. }
case: (altP (x =P i)) => xNi //=; try subst x;
case: (altP (y =P i)) => yNi //=; try subst y.
-- by rewrite eqxx in xNy.
-- by apply disC1y.
-- rewrite disjoint_sym. apply disC1y. by rewrite eq_sym.
-- by apply map2.
* wlog yNj: x y xy / y!=i.
{ move => H. case: (boolP (y==i)) => yi //=.
- rewrite sg_sym in xy. case: (altP (x =P i)) => xj //=.
+ subst x. by rewrite (sg_edgeNeq xy) in yi.
+ move: (H y x xy xj). rewrite (negbTE xj) yi. by rewrite neighborC.
- move: (H x y xy yi). by rewrite (negbTE yi). }
rewrite (negbTE yNj). case: (altP (x =P i)) => xi //=; first exact: B1.
apply neighbor_del_edge1 with s1 s2.
-- by rewrite (disjointFl (map2 _ _ xi)).
-- by rewrite (disjointFl (map2 _ _ yNj)).
-- exact: map3.
+ (* case x1 x2 x3 in different components (wlog C1 C1 C2) *)
Notation conn G A := (@connected G A).
case: B2 => j [jNi NCs2Pj NCs1Pk].
case: rmapphi => [map0 map1 map2 map3].
pose phi' (k : K4) := if k==i then C s1 else
if k==j then phi j :|: C s2 else phi k.
have C1V1: C s1 \subset V1 by apply: subset_trans (HphiV1 i).
have C2V1: C s2 \subset V1 by apply: subset_trans (HphiV1 i).
suff rmapphi' : @minor_rmap (add_edge s1 s2) K4 phi'.
{ apply caseA with s1 s2 phi' => //.
* rewrite /phi' => x. case: (boolP (x==i)) => xi //=.
case: (boolP (x==j)) => xl //=. by apply/subUsetP.
* rewrite /phi'. exists i. exists j. rewrite (negbTE jNi) !eqxx.
by rewrite eq_sym jNi in_setU s1C s2C. }
rewrite /phi'. split => [x|x|x y xNy|x y xy].
* case: (boolP (x==i)) => xi; [|case: (boolP (x==j)) => xj //].
-- apply/set0Pn; by exists s1.
-- apply/set0Pn. exists s2. by rewrite inE s2C.
* case: (boolP (x==i)) => xi => //; case:(boolP (x==j)) => xj //;
try by apply add_edge_connected.
rewrite setUC. apply: neighbor_connected => //. exact: add_edge_connected.
* clear C1V1 C2V1.
do ! match goal with
| |- is_true [disjoint _ (C s1) & _ (C s2)] => done
| |- context[ if ?x == ?y then _ else _] => case: (altP (x =P y)) => [?|?]; try subst x
| H : is_true (?x != ?x) |- _ => by rewrite eqxx in H
| |- is_true [disjoint _ (_ :|: _) & _] => apply disjointsU
| |- is_true [disjoint _ & _ (_ :|: _)] => rewrite disjoint_sym; apply disjointsU
| |- is_true [disjoint _ (C s2) & _ (C s1)] => by rewrite disjoint_sym
| |- is_true [disjoint _ (C _) & _ (phi _)] =>
apply disjoint_transL with (mem (phi i)) => //
| |- is_true [disjoint _ (phi _) & _ (C _)] =>
apply disjoint_transR with (mem (phi i)) => //
end.
all: apply: map2 => //; by rewrite eq_sym.
* rewrite /= in xy.
wlog yNj : x y xy / y != j; last rewrite (negbTE yNj).
{ move => W. case: {-}_ / (altP (y =P j)) => [E|H]; last exact: W.
by rewrite neighborC W // -?E // /edge_rel/= eq_sym. }
case:(altP (x =P i)) => xi.
{ rewrite eq_sym -xi (negbTE xy). apply NCs1Pk.
by rewrite inE (negbTE yNj) -xi eq_sym (negbTE xy). }
case:(altP (x =P j)) => xj.
{ subst x. case: (altP (y =P i)) => [E|yNi].
- rewrite neighborC. apply: neighborUr.
apply/neighborP; exists s1; exists s2. by rewrite s1C s2C /edge_rel /= s1Ns2 !eqxx.
- rewrite neighborC. apply: neighborUl. exact: map3. }
case:(altP (y =P i)) => yi; last exact: map3.
by rewrite neighborC NCs1Pk // inE (negbTE xi) (negbTE xj).
Qed.
Theorem TW2_of_K4F (G : sgraph) :
K4_free G -> exists (T : forest) (B : T -> {set G}), sdecomp T G B /\ width B <= 3.
Proof.
move: G. apply: (nat_size_ind (f := fun G => #|G|)) => G Hind K4free.
(* Either G is small, or it has a smallest vseparator of size at most two *)
case (no_K4_smallest_vseparator K4free) =>[|[S [ssepS Ssmall2]]].
{ exact: decomp_small. }
move: (vseparator_separation ssepS.1) => [V1 [V2 [[sep prop] SV12]]].
move: (prop) => [x0 [y0 [Hx0 Hy0]]].
have V1properG: #|induced V1| < #|G|.
{ rewrite card_sig. eapply card_ltnT. simpl. eauto. }
have {x0 Hx0 y0 Hy0} V2properG: #|induced V2| < #|G|.
{ rewrite card_sig. eapply card_ltnT. simpl. eauto. }
wlog C : G S Hind K4free {ssepS Ssmall2} V1 V2 sep {prop} SV12 V1properG V2properG
/ clique (V1 :&: V2).
{ move => W. case: (ltngtP #|S| 2) Ssmall2 => // [Sless2|/eqP Ssize2] _.
- apply W with S V1 V2 => //.
rewrite -SV12. exact: small_clique.
- case/cards2P : Ssize2 => s1 [s2] [s1Ns2 S12].
case (W (add_edge s1 s2)) with S V1 V2 => // {W}.
+ rewrite S12 in ssepS. exact: K4_free_add_edge_sep_size2 ssepS s1Ns2.
+ apply add_edge_separation => //; by rewrite -SV12 S12 !inE eqxx.
+ rewrite -SV12 S12. apply (@clique2 (add_edge s1 s2)) => /=.
by rewrite /edge_rel/= !eqxx s1Ns2.
+ move => T [B] [B1 B2]. exists T. exists B. split => //. move: B1.
destruct G; apply sdecomp_subrel. exact: subrelUl. }
case: (Hind (induced V1)) => // [|T1 [B1 [sd1 w1]]].
{ apply: subgraph_K4_free K4free. exact: induced_sub. }
case: (Hind (induced V2)) => // [|T2 [B2 [sd2 w2]]].
{ apply: subgraph_K4_free K4free. exact: induced_sub. }
case separation_decomp with G V1 V2 T1 T2 B1 B2 => // T [B [sd w]].
exists T. exists B. split => //.
apply leq_trans with (maxn (width B1) (width B2)) => //.
by rewrite geq_max w1 w2.
Qed.
Theorem excluded_minor_TW2 (G : sgraph) :
K4_free G <->
exists (T : forest) (B : T -> {set G}), sdecomp T G B /\ width B <= 3.
Proof. split => [|[T][B][]]. exact: TW2_of_K4F. exact: TW2_K4_free. Qed.