Require Import RelationClasses Morphisms Setoid Omega.
From mathcomp Require Import all_ssreflect.
Require Import edone finite_quotient preliminaries bij set_tac.
Require Import digraph sgraph minor checkpoint.
Require Import structures mgraph mgraph2 skeleton.
Require Import bounded equiv extraction_def.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Set Bullet Behavior "Strict Subproofs".
Section ExtractionIso.
Variable sym : Type.
Notation graph := (graph (flat_labels sym)).
Notation graph2 := (graph2 (flat_labels sym)).
From mathcomp Require Import all_ssreflect.
Require Import edone finite_quotient preliminaries bij set_tac.
Require Import digraph sgraph minor checkpoint.
Require Import structures mgraph mgraph2 skeleton.
Require Import bounded equiv extraction_def.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Set Bullet Behavior "Strict Subproofs".
Section ExtractionIso.
Variable sym : Type.
Notation graph := (graph (flat_labels sym)).
Notation graph2 := (graph2 (flat_labels sym)).
Isomorphim Theorem
(* lemmas for recognizing top and one *)
Lemma iso_top (G : graph2) :
input != output :> G ->
(forall x : G, x \in IO) ->
(forall e : edge G, False) -> G ≃2 top.
Proof.
move => Dio A B.
pose f (x : G) : @g2_top (flat_labels sym) :=
if x == input then input else output.
pose f' (x : @g2_top (flat_labels sym)) : G :=
if x == input then input else output.
pose g (e : edge G) : edge (@g2_top (flat_labels sym)) :=
match (B e) with end.
pose g' (e : edge (@g2_top (flat_labels sym))) : edge G :=
match e with inl e |inr e => vfun e end.
unshelve Iso2 (@Iso _ _ _ (@Bij _ _ f f' _ _) (@Bij _ _ g g' _ _) xpred0 _)=>/=.
- rewrite /f/f'/= => x.
case: (boolP (x == input)) => [/eqP <-|/=]//.
move: (A x). case/setUP => /set1P => -> //. by rewrite eqxx.
- rewrite /f/f'/= => x.
case: (boolP (x == inl tt)) => [/eqP <-|/=]//. by rewrite eqxx.
case: x => // [[]] _. by rewrite eq_sym (negbTE Dio).
- by [].
- by case=>[[]|[]].
- by split.
- by rewrite /f eqxx.
- by rewrite /f eq_sym (negbTE Dio).
Qed.
Lemma iso_one (G : graph2) :
input == output :> G ->
(forall x : G, x \in IO) ->
(forall e : edge G, False) -> G ≃2 1.
Proof.
move => Dio A B.
pose f (x : G) : @g2_one (flat_labels sym) := input.
pose f' (x : @g2_one (flat_labels sym)) : G := input.
pose g (e : edge G) : edge (@g2_one (flat_labels sym)) :=
match (B e) with end.
pose g' (e : edge (@g2_one (flat_labels sym))) : edge G :=
match e with end.
unshelve Iso2 (@Iso _ _ _ (@Bij _ _ f f' _ _) (@Bij _ _ g g' _ _) xpred0 _)=>/=.
- rewrite /f/f'/= => x.
move: (A x). rewrite !inE -(eqP Dio) => /orP. by case => /eqP->.
- by move => [].
- by [].
- by [].
- by split.
Qed.
Lemma comp_exit (G : graph2) (C : {set G}) :
connected [set: skeleton G] ->
input == output :> G -> C \in @components G [set~ input] ->
exists2 z : skeleton G, z \in C & z -- input.
Proof.
move=> G_conn Eio C_comp.
case/and3P: (@partition_components G [set~ input]) => /eqP compU compI comp0.
have /card_gt0P[a a_C] : 0 < #|C|.
{ rewrite card_gt0. by apply: contraTneq C_comp =>->. }
have aNi : a \in [set~ input]. { rewrite -compU. by apply/bigcupP; exists C. }
rewrite -{C C_comp a_C}(def_pblock compI C_comp a_C).
case/uPathP: (connectedTE G_conn a input) => p.
move: (aNi); rewrite !inE. case/(splitR p) => [z][q][zi] {p}->.
rewrite irred_cat. case/and3P=> _ _ /eqP/setP/(_ input).
rewrite !inE eq_sym sg_edgeNeq // andbT => /negbT iNq.
exists z => //.
rewrite pblock_equivalence_partition // ?inE ?(sg_edgeNeq zi) //.
+ apply: (connectRI (p := q)) => x. rewrite !inE. by apply: contraTneq =>->.
+ exact: sedge_equiv_in.
Qed.
Lemma merge_subgraph_dot (G : graph) (V1 V2 : {set G}) (E1 E2 : {set edge G})
(con1 : consistent V1 E1) (con2 : consistent V2 E2) i1 i2 o1 o2 :
val o1 = val i2 -> [disjoint E1 & E2] -> (forall x, x \in V1 -> x \in V2 -> x = val o1) ->
point (subgraph_for con1) i1 o1 · point (subgraph_for con2) i2 o2 ≃2
point (subgraph_for (consistentU con1 con2))
(Sub (val i1) (union_bij_proofL _ (valP i1)))
(Sub (val o2) (union_bij_proofR _ (valP o2))).
Proof.
move => Eoi disE12 cap12. rewrite /dot/=/g2_dot.
set G12 := (point _ _ _ ⊎ point _ _ _)%G.
have eqvI (x : G) (inV1 : x \in V1) (inV2 : x \in V2) :
inl (Sub x inV1) = inr (Sub x inV2) %[mod @eqv_clot G12 [:: (unl output, unr input)]].
{ move: (inV1) (inV2). rewrite (cap12 _ inV1 inV2) {2 4}Eoi /= => ? ?.
rewrite !valK'. apply/eqquotP. exact: eqv_clot_hd. }
set x0 := Sub (sval i1) (union_bij_proofL V2 (valP i1)).
rewrite /x0 /G12.
apply: iso2_comp. apply: (iso_iso2 (merge_subgraph_iso eqvI disE12)).
rewrite !(merge_subgraph_isoE eqvI disE12 x0).
rewrite -> merge_nothing. 2: repeat constructor; exact: val_inj.
apply: (iso_iso2' (h := iso_id)); apply: val_inj => /=; by rewrite val_insubd inE ?(valP i1) ?(valP o2).
Qed.
Lemma merge_subgraph_par (G : graph) (V1 V2 : {set G}) (E1 E2 : {set edge G})
(con1 : consistent V1 E1) (con2 : consistent V2 E2) (i1 o1 : subgraph_for con1) (i2 o2 : subgraph_for con2) :
val i2 = val i1 -> val o2 = val o1 ->
[disjoint E1 & E2] -> (forall x, x \in V1 -> x \in V2 -> x \in [set val i1; val o1]) ->
point (subgraph_for con1) i1 o1 ∥ point (subgraph_for con2) i2 o2 ≃2
point (subgraph_for (consistentU con1 con2))
(Sub (val i1) (union_bij_proofL _ (valP i1)))
(Sub (val o2) (union_bij_proofR _ (valP o2))).
Proof.
move => Ei Eo disE12 cap12. rewrite /par/=/g2_par.
set G12 := (point _ _ _ ⊎ point _ _ _)%G.
have eqvI (x : G) (inV1 : x \in V1) (inV2 : x \in V2) :
inl (Sub x inV1) = inr (Sub x inV2)
%[mod @eqv_clot G12 [:: (unl input, unr input); (unl output, unr output)]].
{ case/set2P : (cap12 _ inV1 inV2) => ?; subst x; rewrite !valK' !/input !/output.
rewrite -Ei in inV1 inV2 *. rewrite valK'. apply/eqquotP. by eqv.
rewrite -Eo in inV1 inV2 *. rewrite valK'. apply/eqquotP. by eqv. }
set x0 := Sub (sval i1) (union_bij_proofL V2 (valP i1)).
rewrite /x0 /G12.
apply: iso2_comp. apply: (iso_iso2 (merge_subgraph_iso eqvI disE12)).
rewrite !(merge_subgraph_isoE eqvI disE12 x0).
rewrite -> merge_nothing. 2: repeat constructor; exact: val_inj.
apply: (iso_iso2' (h := iso_id)); apply: val_inj => /=; by rewrite val_insubd inE ?(valP i1) ?(valP o2).
Qed.
These two lemmas make use of merge_subgraph_dot, drastically
simplifying their proofs (compared to the proofs underlying the ITP
2018 paper)
Lemma split_pip (G : graph2) :
connected [set: skeleton G] -> input != output :> G ->
G ≃2 @bgraph _ G IO input · (@igraph _ G input output · @bgraph _ G IO output).
Proof.
move => conn_G Dio. symmetry.
have [Hi Ho] : input \in @CP (skeleton G) IO /\ output \in @CP (skeleton G) IO
by split; apply: CP_extensive; rewrite !inE eqxx.
rewrite-> dot2A. rewrite /= {1}/bgraph /igraph /induced.
setoid_rewrite merge_subgraph_dot=>//=.
2: exact: interval_bag_edges_disj.
2: move => x; exact: (@bag_interval_cap G).
rewrite /bgraph/induced.
setoid_rewrite-> merge_subgraph_dot => //=.
move: (union_bij_proofL _ _) => Pi.
move: (union_bij_proofR _ _) => Po.
move: (consistentU _ _) => con1.
apply iso2_subgraph_forT => //=.
move => x. move: (sinterval_bag_cover conn_G Dio).
have: x \in [set: G] by []. rewrite /interval; set_tac.
move => e. by rewrite -(interval_bag_edge_cover).
apply: disjointsU. exact: bag_edges_disj.
rewrite disjoint_sym interval_edges_sym. exact: interval_bag_edges_disj.
move => x A B. rewrite inE (disjointFl (bag_disj conn_G _ _ Dio)) //= interval_sym in A.
exact: (@bag_interval_cap G) B A.
Qed.
Lemma split_cp (G : graph2) (u : skeleton G) :
connected [set: skeleton G] -> u \in @cp G input output :\: IO ->
edge_set (@bag G IO input) == set0 ->
edge_set (@bag G IO output) == set0 ->
G ≃2 @igraph _ G input u · (@bgraph _ G IO u · @igraph _ G u output).
Proof.
move => conn_G proper_u Ei0 Eo0. symmetry.
have Dio: input != output :> G.
{ apply: contraTneq proper_u => <-. by rewrite setUid cpxx setDv inE. }
have [? ? ?] : [/\ input \in @CP G IO, output \in @CP G IO & u \in @CP G IO].
{ split; rewrite CP_set2 ?(@mem_cpl G) //; by [rewrite cp_sym (@mem_cpl G)|set_tac]. }
rewrite-> dot2A. rewrite /= {1}/igraph /bgraph /induced.
setoid_rewrite-> merge_subgraph_dot=>//.
2: by rewrite disjoint_sym interval_edges_sym interval_bag_edges_disj.
2: move => x A B; rewrite interval_sym in A; exact: (@bag_interval_cap G) B A.
move: (union_bij_proofL _ _) => Pi.
move: (union_bij_proofR _ _) => Po.
move: (consistentU _ _) => con1.
rewrite /igraph. setoid_rewrite merge_subgraph_dot=>//.
apply iso2_subgraph_forT=>//.
- move => x.
have: x \in @interval G input output.
{ move: (sinterval_bag_cover conn_G Dio).
rewrite (eqP (edgeless_bag _ _ _)) // (eqP (edgeless_bag _ _ _)) //.
rewrite setUC setUA [[set _;_]]setUC -/(@interval G _ _) => <- //. }
rewrite (interval_cp_cover conn_G proper_u) /interval. by set_tac.
- move => e.
have: e \in interval_edges input output.
{ move: (interval_bag_edge_cover conn_G Dio).
by rewrite (eqP Ei0) (eqP Eo0) set0U setU0 => <-. }
by rewrite (interval_cp_edge_cover conn_G proper_u).
- apply: disjointsU. apply: interval_edges_disj_cp. by set_tac.
apply: interval_bag_edges_disj => //.
- move => x. case/setUP. apply: (@interval_interval_cap G). by set_tac.
exact: (@bag_interval_cap G).
Qed.
Lemma iso_split_par2 (G : graph2) (C D : {set G})
(Ci : input \in C) (Co : output \in C) (Di : input \in D) (Do : output \in D) :
C :&: D \subset IO -> C :|: D = setT ->
edge_set C :&: edge_set D = set0 -> edge_set C :|: edge_set D = setT ->
G ≃2 point (induced C) (Sub input Ci) (Sub output Co)
∥ point (induced D) (Sub input Di) (Sub output Do).
Proof.
move => subIO fullCD disjE fullE. symmetry.
apply: iso2_comp. apply: (merge_subgraph_par _ _ _ _) => //=.
abstract by rewrite -setI_eq0 disjE //.
abstract by move => x inC inD; apply: (subsetP subIO); exact/setIP.
by apply: iso2_subgraph_forT => //=; rewrite ?fullCD ?fullE.
Qed.
Lemma comp_dom2_redirect (G : graph2) (C : {set G}) :
connected [set: skeleton G] -> input == output :> G ->
edge_set G IO == set0 -> C \in @components G [set~ input] ->
component C ≃2 dom (redirect C).
Proof.
move => G_conn Eio no_loops HC.
rewrite /redirect. case: pickP => [x /andP [inC adj_x] |].
have E : input |: (output |: C) = input |: (x |: C).
{ by rewrite (eqP Eio) [x |: C]setU1_mem // setUA setUid. }
- apply: subgraph_for_iso => //; by rewrite ?E //= (eqP Eio).
- case: (sig2W (comp_exit G_conn Eio HC)) => z Z1.
rewrite sg_sym /=/sk_rel => /andP[_ B] /(_ z). by rewrite Z1 B.
Qed.
Lemma componentless_one (G : graph2) :
input == output :> G -> edge_set G IO == set0 ->
@components G [set~ input] == set0 -> G ≃2 1.
Proof.
move => Eio E com0.
have A (x : G) : x = input.
{ set C := pblock (@components G [set~ input]) x.
apply: contraTeq com0 => Hx. apply/set0Pn. exists C. apply: pblock_mem.
by rewrite (cover_partition (partition_components _)) !inE. }
apply: iso_one => // [x|e]; first by rewrite !inE [x]A eqxx.
move/eqP/setP/(_ e) : E.
by rewrite !inE [source e]A [target e]A !eqxx.
Qed.
Lemma split_component (G : graph2) (C : {set G}) :
edge_set G IO == set0 -> C \in @components G (~: IO) ->
G ≃2 component C ∥ induced2 (~: C).
Proof.
move=> NEio C_comp.
case/and3P: (@partition_components G (~: IO)) => /eqP compU compI comp0n.
have : C \subset ~: IO by rewrite -compU; apply/subsetP => x; exact: mem_cover.
rewrite subsetC subUset !sub1set => /andP[iNC oNC]. rewrite induced2_induced.
apply: iso_split_par2.
- rewrite setUA setIUl setICr setU0. exact: subsetIl.
- by rewrite -!setUA setUCr !setUT.
- rewrite -(eqP NEio). apply/setP=> e; rewrite !inE.
rewrite andbACA !orbA andb_orl andbN orbF.
rewrite [_ && (target e \notin C)]andb_orl andbN orbF andbACA.
apply/idP/idP => [/andP[->]//|He]. rewrite He /=.
rewrite !inE in iNC oNC.
case/andP: He => /orP[]/eqP-> /orP[]/eqP->; by rewrite ?iNC ?oNC.
- apply/eqP. rewrite eqEsubset subsetT /=. apply/subsetP=> e _.
rewrite !inE. case: (altP (source e =P target e)) => [<-|He].
by rewrite !andbb -!orbA orbN.
rewrite -negb_or orbC -implybE. apply/implyP.
have {He} : @sedge G (source e) (target e) by rewrite /=/sk_rel He adjacent_edge.
move: {e} (source e) (target e).
suff Hyp (x y : G) : @sedge G x y -> x \in C ->
[|| y == input, y == output | y \in C].
{ move=> x y xy /orP[]H; rewrite H !orbT /= ?andbT; first exact: Hyp xy H.
move: H. have : @sedge G y x by rewrite sg_sym. exact: Hyp. }
move=> xy Hx. have := component_exit xy C_comp Hx. by rewrite !inE negbK orbA.
Qed.
Lemma componentless_top (G : graph2) :
input != output :> G -> @components G (~: IO) == set0 ->
point (@remove_edges _ G (edge_set IO)) input output ≃2 top.
Proof.
move => Dio com0.
have A (x: G) : x \in IO.
{ set C := pblock (@components G (~: IO)) x.
apply: contraTT com0 => Hx. apply/set0Pn. exists C. apply: pblock_mem.
by rewrite (cover_partition (partition_components _)) inE. }
apply: iso_top => //.
move => [e He]. rewrite inE negb_and in He.
case/orP: He; by rewrite A.
Qed.
Lemma split_io_edge_aux (G : graph2) (e : edge G) :
e \in edges input output -> point (remove_edges [set e] ∔ [input, elabel e, output]) input output ≃2 G.
Proof.
rewrite inE => /andP [/eqP Es /eqP Et]. rewrite -{1}Es -{1}Et.
apply: iso2_comp. apply: iso_iso2. apply: remove_edge_add. by case: G e {Es Et}.
Qed.
Lemma split_io_edge (G : graph2) (e : edge G) :
e \in edges input output ->
G ≃2 edge_graph2 1%lbl (elabel e) 1%lbl ∥ point (remove_edges [set e]) input output.
Proof.
move => e_io. symmetry.
rewrite /par/=/g2_par/=.
apply: iso2_comp. apply: merge_iso2. apply: union_add_edge_l. rewrite /=.
apply: iso2_comp. apply: iso_iso2. apply: merge_add_edge. rewrite !merge_add_edgeE.
apply: iso2_comp. apply: iso_iso2. apply: add_edge_iso. apply: merge_iso.
apply: union_C. rewrite !merge_isoE /=.
pose k (x : @two_graph (flat_labels sym) tt tt) : remove_edges [set e] :=
match x with inl tt => input | inr tt => output end.
eapply iso2_comp. apply: iso_iso2. apply: add_edge_iso. apply (merge_union_K (k := k)).
- done.
- abstract (case => [[]|[]] /=; apply/eqquotP; eqv).
- abstract (repeat case).
- rewrite /= !merge_union_KE /= {}/k.
apply: iso2_comp. apply: iso_iso2. apply: iso_sym. apply: merge_add_edge.
Unshelve. (* why? *)
rewrite !(@merge_add_edgeE _ _ _ input (elabel e) output _).
apply: iso2_comp. apply: @merge_nothing.
+ abstract (repeat constructor).
+ exact: split_io_edge_aux.
Qed.
Lemma split_io_edge_lens (G : graph2) (e : edge G) :
e \in edge_set IO -> lens G -> G ≃2 graph_of_term (tm_ e) ∥ point (remove_edges [set e]) input output.
Proof.
move => e_io lens_G. rewrite lens_io_set // inE in e_io.
rewrite /tm_. case: ifP e_io => //= [e_io _|eNio e_oi]; first exact: split_io_edge.
rewrite <- cnv2I.
have e_io : e \in @edges _ (g2_cnv G) input output by [].
rewrite -> (split_io_edge e_io) at 1. by rewrite -> cnv2par.
Qed.
Lemma split_io_loop (G : graph2) (e : edge G) :
e \in edge_set IO -> input == output :> G -> G ≃2 graph_of_term (tm_ e) ∥ point (remove_edges [set e]) input output.
Proof.
move => e_io /eqP Eio. rewrite inE -Eio setUid !inE in e_io.
rewrite /tm_ inE -Eio e_io {2}Eio /=. apply: split_io_edge. by rewrite inE -Eio.
Qed.
Theorem term_of_iso (G : graph2) :
CK4F G -> G ≃2 graph_of_term (term_of G).
Proof.
elim: (wf_leq (@term_of_measure sym) G) => {G} G _ IH CK4F_G.
rewrite term_of_eq // /term_of_rec.
case: ifP => [C1|/negbT C1].
- (* selfloops / io-redirect *)
case: picksP => [e e_io|/eqP C2]; last first.
+ case: pickP => [C HC|/(_ _) HC] /=.
* setoid_rewrite (@split_component _ C) at 1 =>//.
rewrite -?(eqP C1) ?setUid.
have G_conn : connected [set: skeleton G] by case: CK4F_G.
setoid_rewrite <-IH=>//.
setoid_rewrite comp_dom2_redirect=>//.
-- exact: measure_redirect.
-- exact: CK4F_redirect.
-- move: HC. rewrite -[set1 input]setUid {2}(eqP C1).
exact: measure_remove_component.
-- exact: CK4F_remove_component.
-- by rewrite -?(eqP C1) ?setUid.
* have : @components G [set~ input] == set0.
{ rewrite -subset0. apply/subsetP => C. by rewrite HC. }
exact: componentless_one.
+ rewrite -> (split_io_loop e_io C1) at 1. simpl. rewrite <- IH => //.
* apply: measure_remove_edges. exact: set10.
* apply: CK4F_remove_loops => //. by rewrite sub1set.
- case: ifP => [C2|/negbT C2].
+ (* parallel split *)
have EC := lens_sinterval (proj1 CK4F_G) C2.
case: picksP => [e e_io|/eqP C3]; last first.
* case: pickP => [C HC|].
-- rewrite EC in HC. setoid_rewrite (split_component _ HC) at 1=> //=.
apply: par_iso2.
++ apply IH; rewrite -EC in HC.
exact: measure_lens. exact: CK4F_lens.
++ apply IH; rewrite -EC in HC.
exact: measure_lens_rest. exact: CK4F_lens_rest.
-- have := split_K4_nontrivial C1 C2 _ CK4F_G.
rewrite edge_set_adj // => /(_ isT)/ltnW.
move=>H H'. exfalso. move: H H'.
case/card_gt0P => C HC /(_ C). by rewrite HC.
* rewrite EC. case: (boolP (_ && _)) => C4 /=.
-- case/andP : C4 => C4 E4.
rewrite -> (split_io_edge_lens e_io C2) at 1.
have -> : [set e] = edge_set IO.
{ apply/eqP. by rewrite eqEsubset sub1set e_io -setD_eq0. }
by rewrite -> componentless_top, par2top.
-- setoid_rewrite (split_io_edge_lens e_io C2) at 1. apply: par_iso2 => //.
rewrite negb_and -EC in C4. move/orP in C4.
apply: IH.
++ apply: measure_remove_edges. exact: set10.
++ apply: CK4F_remove_edges => //=. by rewrite sub1set.
+ (* bag/sequential split *)
rewrite /simple_check_point_term.
case: ifP => [A|/negbT A].
* rewrite /=. (* TODO: clean this up *)
setoid_rewrite <-IH; first last.
apply rec_bag => //; apply: CP_extensive; by rewrite !inE eqxx.
apply rec_bag => //; apply: CP_extensive; by rewrite !inE eqxx.
apply: CK4F_igraph => //; last rewrite cp_sym; exact: mem_cpl.
apply: measure_igraph => //; by case: CK4F_G.
apply rec_bag => //; apply: CP_extensive; by rewrite !inE eqxx.
apply rec_bag => //; apply: CP_extensive; by rewrite !inE eqxx.
case: CK4F_G => G_conn _. setoid_rewrite <-dot2A. exact: split_pip.
* move: A. rewrite negb_or !negbK. case/andP => A B.
rewrite /lens !negb_and A B (negbTE C1) /= in C2.
case: pickP => [z Hz|C]; last first.
{ case:notF. apply: contraNT C2 => _. rewrite -setD_eq0.
apply/eqP. apply/setP => x. by rewrite C inE. }
rewrite /=.
setoid_rewrite (split_cp (proj1 CK4F_G) Hz) at 1 => //.
setoid_rewrite dot2A. repeat apply: dot_iso2.
-- apply IH=> //. exact: measure_split_cpL. exact: CK4F_split_cpL.
-- suff ? : z \in @CP G IO. { apply IH => //; by apply rec_bag. }
case/setDP : Hz => Hz _. apply/bigcupP; exists (input,output) => //.
by rewrite !inE !eqxx.
-- apply IH=> //. exact: measure_split_cpR. exact: CK4F_split_cpR.
Qed.
End ExtractionIso.