Laurent Chevillard

Researcher at CNRS (DR2, Section 02)


Curriculum:

Publications: Almost all of them are on arXiv. See also Google Scholar.

2024

41. Numerical simulations of a stochastic dynamics leading to cascades and loss of regularity: applications to fluid turbulence and generation of fractional Gaussian fields. [PDF,©APS,ArxivVersion]
G. Beck, C.-E. Bréhier, L. Chevillard, R. Grande, W. Ruffenach, Phys. Rev. Research 6, 033048 (2024).
40. Lagrangian modeling of a non-homogeneous turbulent shear flow: Molding homogeneous and isotropic trajectories into a jet. [PDF,©APS]
B. Viggiano, T. Basset, M. Bourgoin, R.B. Cal, L. Chevillard, C. Meneveau, R. Volk, Phys. Rev. Fluids 9, 044604 (2024).


2023

39. A linear Stochastic Model of Turbulent Cascades and Fractional Fields. [PDF,©arxiv]
G.B. Apolinário, G. Beck, L. Chevillard, I. Gallagher, R. Grande, arXiv:2301.00780 (2023).
38. Space-time statistics of a linear dynamical energy cascade model. [PDF,©AIMS]
G.B. Apolinário, L. Chevillard, Mathematics in Engineering, 2023, 5(2): 1-23.


2022

37. Dynamical Fractional and Multifractal Fields. [PDF,©Springer]
G.B. Apolinário, L. Chevillard, J.-C. Mourrat, J. Stat. Phys. 186, 15 (2022).
36.
Single inertial particle statistics in turbulent flows from Lagrangian velocity models. [PDF,©APS]
J. Friedrich, B. Viggiano, M. Bourgoin, R.B. Cal, L. Chevillard, Phys. Rev. Fluids 7, 014303 (2022).


2021

35. Lagrangian diffusion properties of a free shear turbulent jet. [PDF,©CUP]
B. Viggiano, T. Basset, S. Solovitz, T. Barois, M. Gibert, N. Mordant, L. Chevillard, R. Volk, M. Bourgoin, R.B. Cal, J. Fluid Mech. 918, A25 (2021).
34.
Lagrangian turbulence in the woods. [PDF,©CUP]
L. Chevillard, J. Fluid Mech. 916, F1 (2021).
33.
Assessing intermittency characteristics via cumulant analysis of floating wind turbines wakes. [PDF,©AIP]
H. Kadum, S. Rockel, B. Viggiano, T. Dib, M. Holling, L. Chevillard, R.B. Cal, J. Renewable and Sustainable Energy. 13, 013302 (2021).


2020 and before

32. Multifractal Fractional Ornstein-Uhlenbeck Processes. [PDF,©Arxiv]
L. Chevillard, M. Lagoin, S.G. Roux, arXiv:2011.09503 (2020).
31.
Flow of Spatiotemporal Turbulentlike Random Fields. [PDF,©APS,Video1,Video2]
J. Reneuve, L. Chevillard, Phys. Rev. Lett. 125, 014502 (2020).
30.
Modelling Lagrangian velocity and acceleration in turbulent flows as infinitely differentiable stochastic processes. [PDF,©CUP]
B. Viggiano, J. Friedrich, R. Volk, M. Bourgoin, R.B. Cal, L. Chevillard, J. Fluid Mech. 900, A27 (2020).
29.
On a skewed and multifractal unidimensional random field, as a probabilistic representation of Kolmogorov's views on turbulence. [PDF,©Springer]
L. Chevillard, C. Garban, R. Rhodes, V. Vargas, Ann. Henri Poincaré 20, 3693 (2019).
28.
Structure, dynamics, and reconnection of vortices in a nonlocal model of superfluids [PDF,©APS]
J. Reneuve, J. Salort, L. Chevillard, Phys. Rev. Fluids 3, 114602 (2018).
27.
A multifractal model for the velocity gradient dynamics in turbulent flows. [PDF,©CUP]
R.M. Pereira, L. Moriconi, L. Chevillard, J. Fluid Mech. 839, 430 (2018).
26.
Regularized fractional Ornstein-Uhlenbeck processes, and their relevance to the modeling of fluid turbulence. [PDF,©APS]
L. Chevillard, Phys. Rev. E 96, 033111 (2017).
25.
Instantons in a Lagrangian model of turbulence. [PDF,©IOP]
L.S. Grigorio, F. Bouchet, R.M. Pereira, L. Chevillard, J. Phys. A: Math. Theor. 50, 055501 (2017).
24.
A dissipative random velocity field for fully developed fluid turbulence. [PDF,©CUP]
R.M. Pereira, C. Garban, L. Chevillard, J. Fluid Mech. 794, 369 (2016).
23.
Probing quantum and classical turbulence analogy through global bifurcations in a von Karman liquid Helium experiment. [PDF,©AIP]
B Saint-Michel, E Herbert, J Salort, C Baudet, M Bon Mardion, P Bonnay, M Bourgoin, B Castaing, L Chevillard, F Daviaud, P Diribarne, B Dubrulle,
Y Gagne, M Gibert, A Girard, B Hébral, T. Lehner, B Rousset, Phys. Fluids
26, 125109 (2014).
22.
Superfluid high-REynolds von-Karman experiment. [PDF,©AIP]
B. Rousset, P. Bonnay, P. Diribarne, A. Girard, J. M. Poncet, E. Herbert, J. Salort, C. Baudet, B. Castaing, L. Chevillard,
F. Daviaud, B. Dubrulle, Y. Gagne, M. Gibert, B. Hébral, Th. Lehner, P.-E. Roche, B. Saint-Michel, M. Bon Mardion,
Rev. Sci. Instrum.
85, 103908 (2014).
21.
Orientation dynamics of small, triaxial-ellipsoidal particles in isotropic turbulence. [PDF,©CUP]
L. Chevillard, C. Meneveau, J. Fluid Mech. 737, 571 (2013).
20.
Gaussian multiplicative chaos for symmetric isotropic matrices. [PDF,©Springer]
L. Chevillard, R. Rhodes, V. Vargas, J. Stat. Phys 150, 698 (2013).
19.
A phenomenological theory of Eulerian and Lagrangian velocity fluctuations in turbulent flows. [PDF,©Elsevier]
L. Chevillard, B. Castaing, A. Arneodo, E. Lévêque, J.-F. Pinton, S. Roux, C.R. Physique 13, 899 (2012).
See also, Foreword to special issue
Structures and statistics of Fluid Turbulence, [PDF,©Elsevier]
L. Chevillard and M. Wilczek,
C.R. Physique 13, 865 (2012).
18.
Static Spectroscopy of a dense Superfluid. [PDF,©Springer]
S. Villerot, B. Castaing, L. Chevillard, J. Low Temp. Phys., 169, 1 (2012).
17. 
Reynolds number effects on the velocity increment skewness in isotropic turbulence. [PDF,©AIP]
W. Bos, L. Chevillard, J. Scott, R. Rubinstein, Phys. Fluids 24, 015108 (2012).
16.
Lagrangian time correlations of vorticity alignments in isotropic turbulence: Observations and model predictions. [PDF,©AIP]
L. Chevillard, C. Meneveau, Phys. Fluids 23, 101704 (2011).
15.
Local and non local pressure Hessian effects in real and synthetic fluid turbulence. [PDF,©AIP]
L. Chevillard, E. Lévêque, F. Taddia, C. Meneveau, H. Yu, C. Rosales, Phys. Fluids 23, 095108 (2011).

2010 and before

14. A Stochastic Representation of the Local Structure of Turbulence [PDF,©IOP]  
L. Chevillard, R. Robert and V. Vargas, EPL
89, 54002 (2010).
13. Matrix Exponential-Based Closures for the Turbulent Subgrid-Scale Stress Tensor [PDF,©APS]  
Y. Li, L. Chevillard, G. Eyink, C. Meneveau, Phys. Rev. E
79, 016305 (2009). 
12. Modeling the pressure Hessian and viscous Laplacian in Turbulence: comparisons with DNS and implications on velocity gradients dynamics. [PDF,©AIP]
L. Chevillard, C. Meneveau, L. Biferale, F. Toschi, Phys. Fluids
20, 101504 (2008). 
11. Universal intermittent properties of particle trajectories in highly turbulent flows. [PDF,©APS]
International Collaboration for Turbulence Research (I.C.T.R.),
A. Arneodo, J. Berg, R. Benzi, L. Biferale, E. Bodenschatz, A. Busse, E. Calzavarini, B. Castaing, M. Cencini,
L. Chevillard, R. Fisher, R. Grauer, H. Homann, D. Lamb, A. S. Lanotte, E. Lévêque, B. Luthi, J. Mann, N. Mordant,
W.-C. Muller, S. Ott, N. T. Ouellette, J.-F. Pinton, S. B. Pope, S. G. Roux, F. Toschi, H. Xu, and P. K. Yeung, 
Phys. Rev. Lett. 100, 254504 (2008).
10. Intermittency and universality in a Lagrangian model of velocity gradients in three-dimensional turbulence. [PDF,©Elsevier]
L. Chevillard, C. Meneveau, C. R. Mécanique 335, 187 (2007).
9. Multi-scale model of gradient evolution in turbulent flows [PDF,©APS]
L. Biferale, L. Chevillard, C. Meneveau, F. Toschi, Phys. Rev. Lett. 98, 214501 (2007).
8. Lagrangian intermittencies in dynamic and static turbulent velocity fields from direct numerical simulations. [PDF,©Taylor&Francis]
E. Lévêque, L. Chevillard, J.-F. Pinton, S. G. Roux, A. Arneodo and N. Mordant, J. Turbulence, 8, 3 (2007).
7. Lagrangian dynamics and statistical geometric structure of turbulence [PDF,©APS]
L. Chevillard, C. Meneveau, Phys. Rev. Lett. 97, 174501 (2006).
6. Dynamics of spatial Fourier modes in turbulence: Sweeping effect, long-time correlations and temporal intermittency. [PDF,©Springer]
C. Poulain, N. Mazellier, L. Chevillard, Y. Gagne, C. Baudet, Eur. Phys. J. B 53, 219-224 (2006).
5. Unified Multifractal Description of Velocity Increments Statistics in Turbulence: Intermittency and Skewness. [PDF,©Elsevier]
L. Chevillard, B. Castaing, E. Lévêque and A. Arneodo, Physica D, 218, 77 (2006).
4. Statistics of Fourier Modes of Velocity and Vorticity in Turbulent Flows : Intermittency and Long-Range Correlations. [PDF,©APS]
L. Chevillard , N. Mazellier, C. Poulain, Y. Gagne, C. Baudet, Phys. Rev. Lett. 95, 200203 (2005).
3. Intermittency of velocity time increments in turbulence. [PDF,©APS]
L. Chevillard, S. G. Roux, E. Lévêque, N. Mordant, J.-F. Pinton, A. Arneodo, Phys. Rev. Lett. 95, 064501 (2005).
2. On the Rapid Increase of Intermittency in the Near-Dissipation Range of Fully Developed Turbulence. [PDF,©Springer]
L. Chevillard, B. Castaing, E. Lévêque, Eur. Phys. J. B 45, 561–567 (2005).
1.  Lagrangian Velocity Statistics in Turbulent Flows: Effects of Dissipation. [PDF,©APS]
L. Chevillard, S.G. Roux, E. Lévêque, N. Mordant, J.-F. Pinton, A. Arneodo, Phys. Rev. Lett. 91, 214502 (2003).