Researcher at CNRS (DR2, Section 02)
Laboratoire
de Physique, ENS Lyon
46, allée d'Italie,
F-69364
LYON CEDEX 07, FRANCE.
phone: +33-4-7272-8466
fax: +33-4-7272-8950
email:
laurent.chevillard (at) cnrs.fr
Joint affiliation at Institut
Camille Jordan (ICJ)
team
Probability, Statistics and Mathematical Physics
Université
Claude Bernard Lyon 1
43 boulevard du 11
novembre 1918
F-69622 Villeurbanne Cedex
Curriculum:
Since 2007: CNRS Researcher Laboratoire de Physique, ENS Lyon.
Since 2023: joint affiliation at ICJ.
Since 2024: Deputy director of the Physics Doctoral School PHAST (Ecole Doctorale)
Responsibilities/Events:
Summer school "Physics and Mathematics of hydrodynamic and wave turbulence" May 26 to 30 (2025), CIRM Marseille, France.
P.I. @ Simons Collaboration (2024-2027), Simons foundation.
‘Flow, Turbulence and Wind Energy’ symposium in honor of Charles Meneveau, October 2023
‘Tribute to Krzysztof Gawedzki’ (2022)
‘Universality in Mathematical Physics: random geometries, field theories and hydrodynamics’ (2022)
‘ANR CONFICA’ (2022-2026)
‘ANR TILT’ (2021-2025)
‘Simons Collaboration on Wave Turbulence’ (2019-2023)
Co-Director ‘GdR on Turbulence’
Editorial Board of Europhysics Letters (2015-2020)
‘ANR Liouville’ (2015-2019)
‘ANR Chamu’ (2011-2014)
Education:
2015
Habilitation à diriger des Recherches (Physics) ENS Lyon. [PDF
in French]
Title:
"Une peinture aléatoire de la turbulence des fluides - A
random painting of fluid turbulence"
2001-2004 PhD
(Physics) Bordeaux University - ENS Lyon (2004), advisor: A.
Arneodo. [PDF
in French]
Title:
"Unified Multifractal Description of the Intermittency
Phenomenon in Eulerian and Lagrangian turbulence"
Postdoctoral positions:
2005-2007
Postdoctoral fellow in Meneveau’s
Lab at Johns
Hopkins.
2004-2005 Postdoctoral
fellow in L.E.G.I.
(Grenoble - France) with C.
Baudet and Y. Gagne.
Research interests:
Physics of turbulent flows,
Intermittency, Multifractals, Eulerian description and Lagrangian
dynamics, Navier-Stokes equations, Probabilistic modeling and
Stochastic processes, Hydrodynamics of Superfluids, Large Eddy
Simulations.
Publications: Almost all of them are on arXiv. See also Google Scholar.
2024
41. Numerical
simulations of a stochastic dynamics leading to cascades and loss of
regularity: applications to fluid turbulence and generation of
fractional Gaussian fields. [PDF,©APS,ArxivVersion]
G.
Beck, C.-E. Bréhier, L. Chevillard, R. Grande, W. Ruffenach, Phys.
Rev. Research 6,
033048 (2024).
40.
Lagrangian
modeling of a non-homogeneous turbulent shear flow: Molding
homogeneous and isotropic trajectories into a jet.
[PDF,©APS]
B.
Viggiano,
T. Basset, M. Bourgoin, R.B. Cal, L. Chevillard, C. Meneveau, R.
Volk,
Phys.
Rev. Fluids 9,
044604 (2024).
2023
39.
A
linear Stochastic Model of Turbulent Cascades and Fractional Fields.
[PDF,©arxiv]
G.B.
Apolinário,
G. Beck, L. Chevillard, I. Gallagher, R. Grande, arXiv:2301.00780
(2023).
38.
Space-time
statistics of a linear dynamical energy cascade model.
[PDF,©AIMS]
G.B.
Apolinário,
L. Chevillard, Mathematics
in Engineering, 2023, 5(2): 1-23.
2022
37. Dynamical
Fractional and Multifractal Fields. [PDF,©Springer]
G.B.
Apolinário,
L. Chevillard, J.-C. Mourrat, J.
Stat. Phys. 186,
15 (2022).
36.
Single inertial
particle statistics in turbulent flows from Lagrangian velocity
models. [PDF,©APS]
J.
Friedrich, B. Viggiano, M. Bourgoin, R.B. Cal, L. Chevillard, Phys.
Rev. Fluids 7,
014303 (2022).
2021
35. Lagrangian
diffusion properties of a free shear turbulent jet. [PDF,©CUP]
B.
Viggiano, T. Basset, S. Solovitz, T. Barois, M. Gibert, N. Mordant,
L. Chevillard, R. Volk, M. Bourgoin, R.B. Cal, J. Fluid Mech. 918,
A25 (2021).
34.
Lagrangian
turbulence
in the woods.
[PDF,©CUP]
L.
Chevillard, J. Fluid Mech. 916,
F1 (2021).
33.
Assessing
intermittency characteristics via
cumulant analysis of floating wind turbines wakes.
[PDF,©AIP]
H.
Kadum, S. Rockel, B. Viggiano, T. Dib, M. Holling, L. Chevillard,
R.B. Cal, J. Renewable
and Sustainable Energy.
13,
013302 (2021).
2020 and before
32. Multifractal
Fractional Ornstein-Uhlenbeck Processes. [PDF,©Arxiv]
L.
Chevillard, M. Lagoin, S.G. Roux, arXiv:2011.09503
(2020).
31. Flow
of Spatiotemporal Turbulentlike Random Fields.
[PDF,©APS,Video1,Video2]
J.
Reneuve, L. Chevillard,
Phys. Rev. Lett. 125,
014502 (2020).
30.
Modelling Lagrangian
velocity and acceleration in turbulent flows as infinitely
differentiable stochastic processes. [PDF,©CUP]
B.
Viggiano, J. Friedrich, R. Volk, M. Bourgoin, R.B. Cal, L.
Chevillard, J. Fluid Mech. 900,
A27 (2020).
29. On
a skewed and multifractal unidimensional random field, as a
probabilistic representation of Kolmogorov's views on turbulence.
[PDF,©Springer]
L.
Chevillard, C. Garban, R. Rhodes, V. Vargas, Ann. Henri Poincaré 20,
3693 (2019).
28.
Structure, dynamics,
and reconnection of
vortices in a nonlocal model of superfluids [PDF,©APS]
J.
Reneuve, J. Salort, L. Chevillard, Phys. Rev. Fluids 3,
114602 (2018).
27.
A multifractal model
for the velocity gradient dynamics in turbulent flows.
[PDF,©CUP]
R.M.
Pereira, L. Moriconi, L. Chevillard, J. Fluid Mech. 839,
430 (2018).
26. Regularized
fractional Ornstein-Uhlenbeck processes, and their relevance to the
modeling of fluid turbulence. [PDF,©APS]
L.
Chevillard, Phys. Rev. E 96,
033111 (2017).
25. Instantons
in a Lagrangian model of turbulence. [PDF,©IOP]
L.S.
Grigorio, F. Bouchet, R.M. Pereira, L. Chevillard, J. Phys. A: Math.
Theor. 50,
055501 (2017).
24. A
dissipative random velocity field for fully developed fluid
turbulence. [PDF,©CUP]
R.M.
Pereira, C. Garban, L. Chevillard, J. Fluid Mech. 794,
369 (2016).
23. Probing
quantum and classical turbulence analogy through global bifurcations
in a von Karman liquid Helium experiment. [PDF,©AIP]
B
Saint-Michel, E Herbert, J Salort, C Baudet, M Bon Mardion, P Bonnay,
M Bourgoin, B Castaing, L Chevillard, F Daviaud, P Diribarne, B
Dubrulle,
Y Gagne, M Gibert, A Girard, B Hébral, T. Lehner, B
Rousset, Phys. Fluids 26,
125109 (2014).
22.
Superfluid high-REynolds
von-Karman experiment. [PDF,©AIP]
B.
Rousset, P. Bonnay, P. Diribarne, A. Girard, J. M. Poncet, E.
Herbert, J. Salort, C. Baudet, B. Castaing, L. Chevillard,
F.
Daviaud, B. Dubrulle, Y. Gagne, M. Gibert, B. Hébral, Th. Lehner,
P.-E. Roche, B. Saint-Michel, M. Bon Mardion,
Rev. Sci. Instrum.
85,
103908 (2014).
21.
Orientation dynamics of
small, triaxial-ellipsoidal particles in isotropic turbulence.
[PDF,©CUP]
L.
Chevillard, C. Meneveau, J. Fluid Mech. 737,
571 (2013).
20.
Gaussian multiplicative
chaos for symmetric isotropic matrices. [PDF,©Springer]
L.
Chevillard, R. Rhodes, V. Vargas, J. Stat. Phys 150,
698 (2013).
19. A
phenomenological theory of Eulerian and Lagrangian velocity
fluctuations in turbulent flows. [PDF,©Elsevier]
L.
Chevillard, B. Castaing, A. Arneodo, E. Lévêque, J.-F. Pinton, S.
Roux, C.R. Physique 13,
899 (2012).
See also, Foreword to special issue Structures
and statistics of Fluid Turbulence, [PDF,©Elsevier]
L.
Chevillard and M. Wilczek, C.R.
Physique 13,
865 (2012).
18.
Static Spectroscopy
of a dense Superfluid. [PDF,©Springer]
S.
Villerot, B. Castaing, L. Chevillard, J. Low Temp. Phys., 169,
1
(2012).
17. Reynolds
number effects on the velocity increment skewness in isotropic
turbulence. [PDF,©AIP]
W.
Bos, L. Chevillard, J. Scott, R. Rubinstein, Phys. Fluids 24,
015108
(2012).
16.
Lagrangian time
correlations of vorticity alignments in isotropic turbulence:
Observations and model predictions. [PDF,©AIP]
L.
Chevillard, C. Meneveau, Phys.
Fluids 23, 101704
(2011).
15. Local
and non local pressure Hessian effects in real and synthetic fluid
turbulence. [PDF,©AIP]
L.
Chevillard, E. Lévêque, F. Taddia, C. Meneveau, H. Yu, C. Rosales,
Phys. Fluids 23,
095108 (2011).
2010 and before
14. A Stochastic
Representation of the Local Structure of Turbulence [PDF,©IOP]
L.
Chevillard, R. Robert and V. Vargas, EPL 89,
54002 (2010).
13. Matrix
Exponential-Based Closures for the Turbulent Subgrid-Scale Stress
Tensor [PDF,©APS]
Y. Li,
L. Chevillard, G. Eyink, C. Meneveau, Phys. Rev. E 79,
016305 (2009).
12. Modeling
the pressure Hessian and viscous Laplacian in Turbulence: comparisons
with DNS and implications on velocity gradients dynamics.
[PDF,©AIP]
L.
Chevillard, C. Meneveau, L. Biferale, F. Toschi, Phys. Fluids 20,
101504 (2008).
11. Universal
intermittent properties of particle trajectories in highly turbulent
flows. [PDF,©APS]
International
Collaboration for Turbulence Research (I.C.T.R.),
A.
Arneodo, J. Berg, R. Benzi, L. Biferale, E. Bodenschatz, A. Busse, E.
Calzavarini, B. Castaing, M. Cencini,
L. Chevillard, R. Fisher,
R. Grauer, H. Homann, D. Lamb, A. S. Lanotte, E. Lévêque, B.
Luthi, J. Mann, N. Mordant,
W.-C. Muller, S. Ott, N. T.
Ouellette, J.-F. Pinton, S. B. Pope, S. G. Roux, F. Toschi, H. Xu,
and P. K. Yeung, Phys.
Rev. Lett. 100,
254504 (2008).
10. Intermittency
and universality in a Lagrangian model of velocity gradients in
three-dimensional turbulence. [PDF,©Elsevier]
L.
Chevillard, C. Meneveau, C. R. Mécanique 335,
187 (2007).
9. Multi-scale
model of gradient evolution in turbulent flows [PDF,©APS]
L.
Biferale, L. Chevillard, C. Meneveau, F. Toschi, Phys. Rev. Lett. 98,
214501 (2007).
8. Lagrangian
intermittencies in dynamic and static turbulent velocity fields from
direct numerical simulations. [PDF,©Taylor&Francis]
E.
Lévêque, L. Chevillard, J.-F.
Pinton,
S. G.
Roux, A.
Arneodo and N.
Mordant,
J.
Turbulence, 8,
3 (2007).
7. Lagrangian
dynamics and statistical geometric structure of turbulence
[PDF,©APS]
L.
Chevillard, C. Meneveau, Phys. Rev. Lett. 97,
174501 (2006).
6. Dynamics
of spatial Fourier modes in turbulence: Sweeping effect, long-time
correlations and temporal intermittency. [PDF,©Springer]
C.
Poulain, N. Mazellier, L. Chevillard, Y. Gagne, C. Baudet, Eur. Phys.
J. B 53,
219-224 (2006).
5. Unified
Multifractal Description of Velocity Increments Statistics in
Turbulence: Intermittency and Skewness. [PDF,©Elsevier]
L.
Chevillard, B. Castaing, E. Lévêque and A. Arneodo, Physica
D, 218,
77 (2006).
4. Statistics
of Fourier Modes of Velocity and Vorticity in Turbulent Flows :
Intermittency and Long-Range Correlations.
[PDF,©APS]
L.
Chevillard , N. Mazellier, C. Poulain, Y. Gagne, C. Baudet, Phys.
Rev. Lett. 95,
200203 (2005).
3. Intermittency
of velocity time increments in turbulence.
[PDF,©APS]
L.
Chevillard, S. G. Roux, E. Lévêque, N. Mordant, J.-F. Pinton, A.
Arneodo, Phys. Rev. Lett. 95,
064501 (2005).
2.
On the
Rapid Increase of Intermittency in the Near-Dissipation Range of
Fully Developed Turbulence. [PDF,©Springer]
L.
Chevillard, B. Castaing, E. Lévêque, Eur.
Phys. J. B 45,
561–567 (2005).
1.
Lagrangian
Velocity Statistics
in Turbulent Flows: Effects of Dissipation.
[PDF,©APS]
L.
Chevillard,
S.G.
Roux,
E.
Lévêque,
N.
Mordant,
J.-F.
Pinton,
A.
Arneodo,
Phys. Rev. Lett. 91,
214502 (2003).