Library RelationAlgebra.monoid

monoid: typed structures, from ordered monoids to residuated Kleene allegories

We define here all (typed) structures ranging from partially ordered monoids to residuated Kleene allegories

Require Export lattice.

Monoid operations

The following class packages an ordered typed monoid (i.e., a category enriched over a partial order) together with all kinds of operations it can come with: iterations, converse, residuals. We use dummy values when working in structures lacking some operations.
Like for lattice.ops, we use a Class but we mainly exploit Canonical structures inference mechanism.

Universe M.

Class ops := mk_ops {
  ob: Type@{M};
objects of the category
morphisms (each homset is a partially ordered structure)
  dot: n m p, mor n m mor m p mor n p;
composition
  one: n, mor n n;
identity
  itr: n, mor n n mor n n;
strict iteration (transitive closure)
  str: n, mor n n mor n n;
Kleene star (reflexive transitive closure)
  cnv: n m, mor n m mor m n;
converse (transposed relation)
  ldv: n m p, mor n m mor n p mor m p;
left residual/factor/division
  rdv: n m p, mor m n mor p n mor p m
right residual/factor/division
}.
Coercion mor: ops >-> Funclass.
Arguments ob : clear implicits.

Hints for simpl
Arguments mor {ops} n m / : simpl nomatch.
Arguments dot {ops} n m p (x y)%ra / : simpl nomatch.
Arguments one {ops} n / : simpl nomatch.
Arguments itr {ops} n (x)%ra / : simpl nomatch.
Arguments str {ops} n (x)%ra / : simpl nomatch.
Arguments cnv {ops} n m (x)%ra / : simpl nomatch.
Arguments ldv {ops} n m p (x y)%ra / : simpl nomatch.
Arguments rdv {ops} n m p (x y)%ra / : simpl nomatch.

Notations (note that "+" and "∩" are just specialisations of the notations "⊔" and "⊓", when these operations actually come from a monoid)
∩ : \cap (company-coq) or INTERSECTION (0x2229)
⋅ : \cdot (company coq) or DOT OPERATOR (0x22c5)

Notation "x ⋅ y" := (dot _ _ _ x y) (left associativity, at level 25, format "x ⋅ y"): ra_terms.
Notation "x + y" := (@cup (mor _ _) x y) (left associativity, at level 50): ra_terms.
Notation "x ∩ y" := (@cap (mor _ _) x y) (left associativity, at level 40): ra_terms.
Notation "1" := (one _): ra_terms.
Notation zer n m := (@bot (mor n m)).
Notation top' n m := (@top (mor n m)) (only parsing).
Notation "0" := (zer _ _): ra_terms.
Notation "x °" := (cnv _ _ x) (left associativity, at level 5, format "x °"): ra_terms.
Notation "x ^+" := (itr _ x) (left associativity, at level 5, format "x ^+"): ra_terms.
Notation "x ^*" := (str _ x) (left associativity, at level 5, format "x ^*"): ra_terms.
Notation "x -o y" := (ldv _ _ _ x y) (right associativity, at level 60): ra_terms.
Notation "y o- x" := (rdv _ _ _ x y) (left associativity, at level 61): ra_terms.

Like for lattice.ops, we declare most projections as Opaque for typeclass resolution, to save on compilation time.
#[export] Typeclasses Opaque dot one str cnv ldv rdv.

Set Implicit Arguments.
Unset Strict Implicit.

Monoid laws (axioms)

laws l X provides the laws corresponding to the various operations of X, provided these operations belong to the level l. For instance, the specification of Kleene star (str) is available only if the level contains STR.
Note that l indirectly specifies which lattice operations are available on each homset, via the field lattice_laws. We add additional properties when needed (e.g., dotplsx_: composition (dot) distribute over sums (pls), provided there are sums)
The partially ordered categorical structure (leq,weq,dot,one) is always present.
Like for lattices.laws, some axioms end with an underscore, either because they can be strengthened to an equality (e.g., cnvdot_), or because they become derivable in presence of other axiomes (e.g., dotx1_), or both (e.g., dotplsx_).
Unlike for operations (ops), laws are actually inferred by typeclass resolution.

Class laws (l: level) (X: ops) := {
  lattice_laws:> n m, lattice.laws l (X n m);
  
po-monoid laws
  dotA: n m p q (x: X n m) y (z: X p q), x⋅(yz) (xy)⋅z;
  dot1x: n m (x: X n m), 1x x;
  dotx1_: CNV l n m (x: X m n), x1 x;
  dot_leq_: DIV l n m p, Proper (leq ==> leq ==> leq) (dot n m p);
  
slo-monoid laws (distribution of ⋅ over + and 0)
  dotplsx_ `{CUP l}: DIV l n m p (x y: X n m) (z: X m p), (x+y)⋅z xz+yz;
  dotxpls_ `{CUP l}: DIV l CNV l n m p (x y: X m n) (z: X p m), z⋅(x+y) zx+zy;
  dot0x_ `{BOT l}: DIV l n m p (x: X m p), 0x zer n p;
  dotx0_ `{BOT l}: DIV l CNV l n m p (x: X p m), x0 zer p n;
  
converse laws
  cnvdot_ `{CNV l}: n m p (x: X n m) (y: X m p), (xy y°x°;
  cnv_invol `{CNV l}: n m (x: X n m), x°° x;
  cnv_leq `{CNV l}:> n m, Proper (leq ==> leq) (cnv n m);
  cnv_ext_ `{CNV l}: CAP l n m (x: X n m), x xx°x;
  
star laws
  str_refl `{STR l}: n (x: X n n), 1 x^*;
  str_cons `{STR l}: n (x: X n n), xx^* x^*;
  str_ind_l `{STR l}: n m (x: X n n) (z: X n m), xz z x^*z z;
  str_ind_r_`{STR l}: DIV l CNV l n m (x: X n n) (z: X m n), zx z zx^* z;
  itr_str_l `{STR l}: n (x: X n n), x^+ xx^*;
  
modularity law
  capdotx `{AL l}: n m p (x: X n m) (y: X m p) (z: X n p), (xy) z x⋅(y (x°z));
  
left and right residuals
  ldv_spec `{DIV l}: n m p (x: X n m) (y: X n p) z, z x -o y xz y;
  rdv_spec `{DIV l}: n m p (x: X m n) (y: X p n) z, z y o- x zx y
}.

Basic properties


#[export] Instance dot_leq `{laws}: n m p, Proper (leq ==> leq ==> leq) (dot n m p).
Proof.
  destruct dot_leq_. 2: assumption.
  intros n m p x x' Hx y y' Hy.
  rewrite <-rdv_spec, Hx, rdv_spec.
  rewrite <-ldv_spec, Hy, ldv_spec.
  reflexivity.
Qed.

#[export] Instance dot_weq `{laws} n m p: Proper (weq ==> weq ==> weq) (dot n m p) := op_leq_weq_2.

Basic properties of the converse operation


#[export] Instance cnv_weq `{laws} `{CNV l} n m: Proper (weq ==> weq) (cnv n m) := op_leq_weq_1.

Lemma cnv_leq_iff `{laws} `{CNV l} n m (x y: X n m): x° y° x y.
Proof. split. intro E. apply cnv_leq in E. now rewrite 2cnv_invol in E. apply cnv_leq. Qed.
Lemma cnv_leq_iff' `{laws} `{CNV l} n m (x: X n m) y: x y° x° y.
Proof. now rewrite <- cnv_leq_iff, cnv_invol. Qed.

Lemma cnv_weq_iff `{laws} `{CNV l} n m (x y: X n m): x° y° x y.
Proof. now rewrite 2weq_spec, 2cnv_leq_iff. Qed.
Lemma cnv_weq_iff' `{laws} `{CNV l} n m (x: X n m) y: x y° x° y.
Proof. now rewrite <-cnv_weq_iff, cnv_invol. Qed.

simple tactic to move converse from one side to the other of an (in)equation
Ltac cnv_switch := first [
  rewrite cnv_leq_iff |
  rewrite cnv_leq_iff' |
  rewrite <-cnv_leq_iff' |
  rewrite <-cnv_leq_iff |
  rewrite cnv_weq_iff |
  rewrite cnv_weq_iff' |
  rewrite <-cnv_weq_iff' |
  rewrite <-cnv_weq_iff ].

Lemma cnvdot `{laws} `{CNV l} n m p (x: X n m) (y: X m p): (xy y°x°.
Proof. apply antisym. apply cnvdot_. cnv_switch. now rewrite cnvdot_, 2cnv_invol. Qed.

Lemma cnv1 `{laws} `{CNV l} n: (one n 1.
Proof. rewrite <- (dot1x (1°)). cnv_switch. now rewrite cnvdot, cnv_invol, dot1x. Qed.

Lemma cnvpls `{laws} `{CNV+CUP l} n m (x y: X n m): (x+y x°+y°.
Proof.
  apply antisym.
  cnv_switch. apply leq_cupx; cnv_switch; lattice.
  apply leq_cupx; cnv_switch; lattice.
Qed.

Lemma cnvcap `{laws} `{AL l} n m (x y: X n m): (x y x° y°.
Proof.
  apply antisym.
  apply leq_xcap; apply cnv_leq; lattice.
  cnv_switch. apply leq_xcap; cnv_switch; lattice.
Qed.

Lemma cnv0 `{laws} `{CNV+BOT l} n m: (zer n m 0.
Proof. apply antisym; [cnv_switch|]; apply leq_bx. Qed.

Lemma cnvtop `{laws} `{CNV+TOP l} n m: (top: X n m top.
Proof. apply antisym; [|cnv_switch]; apply leq_xt. Qed.

Lemma cnvneg `{laws} `{CNV+BL l} n m (x: X n m): (neg x neg (x°).
Proof.
  apply neg_unique.
  rewrite <-cnvpls, cupC, cupneg. now rewrite cnvtop.
  rewrite <-cnvcap, capC, capneg. now rewrite cnv0.
Qed.

Basic properties of composition


Lemma dotx1 `{laws} n m (x: X m n): x1 x.
Proof. destruct dotx1_; trivial. cnv_switch. now rewrite cnvdot, cnv1, dot1x. Qed.

Lemma dotplsx `{laws} `{CUP l} n m p (x y: X n m) (z: X m p): (x+y)⋅z xz+yz.
Proof.
  apply antisym. 2: apply leq_cupx; apply dot_leq; lattice.
  destruct dotplsx_ as [Hl|E]. 2: apply E.
  rewrite <-rdv_spec. apply leq_cupx; rewrite rdv_spec; lattice.
Qed.

Lemma dotxpls `{laws} `{CUP l} n m p (x y: X m n) (z: X p m): z⋅(x+y) zx+zy.
Proof.
  apply antisym. 2: apply leq_cupx; apply dot_leq; lattice.
  destruct dotxpls_ as [Hl|[Hl|E]].
   rewrite <-ldv_spec. apply leq_cupx; rewrite ldv_spec; lattice.
   cnv_switch. rewrite cnvpls,3cnvdot,cnvpls. apply weq_leq, dotplsx.
  apply E.
Qed.

Lemma dot0x `{laws} `{BOT l} n m p (x: X m p): 0x zer n p.
Proof.
  apply antisym. 2: apply leq_bx.
  destruct dot0x_ as [Hl|E]. 2: apply E.
  rewrite <-rdv_spec. apply leq_bx.
Qed.

Lemma dotx0 `{laws} `{BOT l} n m p (x: X p m): x0 zer p n.
Proof.
  apply antisym. 2: apply leq_bx.
  destruct dotx0_ as [Hl|[Hl|E]].
   rewrite <-ldv_spec. apply leq_bx.
   cnv_switch. rewrite cnvdot,2cnv0. apply weq_leq, dot0x.
  apply E.
Qed.

Lemma dotxcap `{laws} `{CAP l} n m p (x: X n m) (y z: X m p):
  x (y z) (xy) (xz).
Proof. apply leq_xcap; apply dot_leq; lattice. Qed.

Lemma cnv_ext `{laws} `{CNV l} n m (x: X n m): x xx°x.
Proof.
  destruct cnv_ext_; trivial.
  transitivity ((x1) x). rewrite dotx1. lattice.
  rewrite capdotx, <-dotA. apply dot_leq; lattice.
Qed.

Lemma capxdot `{laws} `{AL l} n m p (x: X m n) (y: X p m) (z: X p n):
  (yx) z (y (zx°))⋅x.
Proof. cnv_switch. now rewrite cnvdot, 2cnvcap, 2cnvdot, capdotx. Qed.

Basic properties of left division

only those properties that are required to derive str_ind_r out of divisions, see module factor for other properties

Lemma ldv_cancel `{laws} `{DIV l} n m p (x: X n m) (y: X n p): x⋅(x -o y) y.
Proof. now rewrite <-ldv_spec. Qed.

Lemma ldv_trans `{laws} `{DIV l} n m p q (x: X n m) (y: X n p) (z: X n q):
  (x -o y)⋅(y -o z) x -o z.
Proof. now rewrite ldv_spec, dotA, 2ldv_cancel. Qed.

Lemma leq_ldv `{laws} `{DIV l} n m (x y: X n m): x y 1 x -o y.
Proof. now rewrite ldv_spec, dotx1. Qed.

Lemma ldv_xx `{laws} `{DIV l} n m (x: X n m): 1 x -o x.
Proof. now rewrite <-leq_ldv. Qed.

#[export] Instance ldv_leq `{laws} `{DIV l} n m p: Proper (leq --> leq ++> leq) (ldv n m p).
Proof. intros x x' Hx y y' Hy. now rewrite ldv_spec, <-Hx, <-Hy, <-ldv_spec. Qed.

#[export] Instance ldv_weq `{laws} `{DIV l} n m p: Proper (weq ==> weq ==> weq) (ldv n m p).
Proof. simpl. setoid_rewrite weq_spec. split; apply ldv_leq; tauto. Qed.

Lemma cnvldv `{laws} `{CNV+DIV l} n m p (x: X n m) (y: X n p): (x -o y y° o- x°.
Proof.
  apply from_below. intro z.
  cnv_switch. rewrite ldv_spec.
  cnv_switch. rewrite cnvdot, cnv_invol.
  now rewrite rdv_spec.
Qed.

Schroeder rules

Lemma Schroeder_ `{laws} `{BL+CNV l} n m p (x : X n m) (y : X m p) (z : X n p):
  x°!z !y xy z.
Proof.
  intro E. apply leq_cap_neg in E. rewrite negneg in E.
  apply leq_cap_neg. now rewrite capdotx, capC, E, dotx0.
Qed.

Lemma Schroeder_l `{laws} `{BL+CNV l} n m p (x : X n m) (y : X m p) (z : X n p):
  xy z x°!z !y.
Proof.
  split. 2: apply Schroeder_. intro.
  apply Schroeder_. now rewrite 2negneg, cnv_invol.
Qed.

Basic properties of Kleene star

(more properties in kleene)

Lemma str_ext `{laws} `{STR l} n (x: X n n): x x^*.
Proof. now rewrite <-str_cons, <-str_refl, dotx1. Qed.

Lemma str_ind_l' `{laws} `{STR l} n m (x: X n n) (y z: X n m): y z xz z x^*y z.
Proof. intro E. rewrite E. apply str_ind_l. Qed.

Lemma str_ind_l1 `{laws} `{STR l} n (x z: X n n): 1 z xz z x^* z.
Proof. rewrite <-(dotx1 (x^*)). apply str_ind_l'. Qed.

#[export] Instance str_leq `{laws} `{STR l} n: Proper (leq ==> leq) (str n).
Proof.
  intros x y E. apply str_ind_l1. apply str_refl.
  rewrite E. apply str_cons.
Qed.

#[export] Instance str_weq `{laws} `{STR l} n: Proper (weq ==> weq) (str n) := op_leq_weq_1.

Lemma str_snoc `{laws} `{STR l} n (x: X n n): x^*x x^*.
Proof. apply str_ind_l'. apply str_ext. apply str_cons. Qed.

Lemma str_unfold_l `{laws} `{KA l} n (x: X n n): x^* 1+xx^*.
Proof.
  apply antisym. apply str_ind_l1. lattice.
  rewrite dotxpls. apply leq_cupx. rewrite <-str_refl. lattice.
  rewrite <-str_cons at 2. lattice.
  rewrite str_cons, (str_refl x). lattice.
Qed.

Lemma str_itr `{laws} `{KA l} n (x: X n n): x^* 1+x^+.
Proof. rewrite itr_str_l. apply str_unfold_l. Qed.

Lemma cnvstr_ `{laws} `{CNV+STR l} n (x: X n n): x^*° x°^*.
Proof.
  cnv_switch. apply str_ind_l1. now rewrite <-str_refl, cnv1.
  cnv_switch. rewrite cnvdot, cnv_invol. apply str_snoc.
Qed.

Lemma str_ldv_ `{laws} `{STR+DIV l} n m (x: X m n): (x -o x)^* x -o x.
Proof. apply str_ind_l1. apply ldv_xx. apply ldv_trans. Qed.

Lemma str_ind_r `{laws} `{STR l} n m (x: X n n) (z: X m n): zx z zx^* z.
Proof.
  destruct str_ind_r_ as [Hl|[Hl|?]]. 3: auto.
  - rewrite <-2ldv_spec. intro E. apply str_leq in E. rewrite E. apply str_ldv_.
  - intros. cnv_switch. rewrite cnvdot, cnvstr_.
    apply str_ind_l; cnv_switch; now rewrite cnvdot, 2cnv_invol.
Qed.

Lemma itr_move `{laws} `{STR l} n (x: X n n): x x^* x^* x.
Proof.
  apply antisym.
   rewrite <-dot1x, (str_refl x), dotA. apply str_ind_r. now rewrite str_snoc at 1.
   apply str_ind_l'. now rewrite <-str_refl, dotx1. now rewrite str_cons at 1.
Qed.

Lemma itr_str_r `{laws} `{STR l} n (x: X n n): x^+ x^* x.
Proof. rewrite itr_str_l. apply itr_move. Qed.

Subtyping / weakening

laws that hold at any level h hold for all level k h
Lemma lower_laws {h k} {X} {H: laws h X} {le: k h}: laws k X.
Proof.
  constructor; [ intros; apply lower_lattice_laws | .. ];
    try solve [ apply H | intro; apply H; eauto using lower_trans ].
  right. apply dotx1.
  right. apply dot_leq.
  intro H'. right. intros. apply weq_leq. apply (lower_trans _ _ _ H') in le. apply dotplsx.
  intro H'. right. right. intros. apply weq_leq. apply (lower_trans _ _ _ H') in le. apply dotxpls.
  intro H'. right. intros. apply weq_leq. apply (lower_trans _ _ _ H') in le. apply dot0x.
  intro H'. right. right. intros. apply weq_leq. apply (lower_trans _ _ _ H') in le. apply dotx0.
  intro H'. right. intros. apply (lower_trans _ _ _ H') in le. apply cnv_ext.
  intro H'. right. right. apply (lower_trans _ _ _ H') in le. apply str_ind_r.
Qed.

Reasoning by duality

dual monoid operations: we reverse all arrows (or morphisms), swap the arguments of dot, and swap left and right residuals.
Note that this corresponds to categorical duality, not to be confused with lattice duality, as defined in lattice.dual.
Definition dual (X: ops) := {|
  ob := ob X;
  mor n m := X m n;
  dot n m p x y := yx;
  one := one;
  cnv n m := cnv m n;
  itr := itr;
  str := str;
  ldv := rdv;
  rdv := ldv
|}.
Notation "X ^op" := (dual X) (at level 1): ra_scope.

laws on a given structure can be transferred to the dual one
Lemma dual_laws l X (L: laws l X): laws l X^op.
Proof.
  constructor; simpl; repeat right; intros.
   apply lattice_laws.
   symmetry. apply dotA.
   apply dotx1.
   apply dot1x.
   now apply dot_leq.
   apply weq_leq, dotxpls.
   apply weq_leq, dotplsx.
   apply weq_leq, dotx0.
   apply weq_leq, dot0x.
   apply weq_leq, cnvdot.
   apply cnv_invol.
   now apply cnv_leq.
   rewrite dotA. apply cnv_ext.
   apply str_refl.
   apply str_snoc.
   now apply str_ind_r.
   now apply str_ind_l.
   apply itr_str_r.
   apply capxdot.
   apply rdv_spec.
   apply ldv_spec.
Qed.

this gives us a tactic to prove properties by categorical duality
Lemma dualize {h} {P: ops Prop} (L: l X, laws l X h l P X)
  {l X} {H: laws l X} {Hl:h l}: P X^op.
Proof. eapply L. apply dual_laws, H. assumption. Qed.

Ltac dual x := apply (dualize x).

the following are examples of the benefits of such dualities
#[export] Instance rdv_leq `{laws} `{DIV l} n m p: Proper (leq --> leq ++> leq) (rdv n m p).
Proof. dual @ldv_leq. Qed.

#[export] Instance rdv_weq `{laws} `{DIV l} n m p: Proper (weq ==> weq ==> weq) (rdv n m p).
Proof. dual @ldv_weq. Qed.

Lemma cnvrdv `{laws} `{CNV+DIV l} n m p (x: X m n) (y: X p n): (y o- x x° -o y°.
Proof. dual @cnvldv. Qed.

Lemma dotcapx `{laws} `{CAP l} n m p (x: X m n) (y z: X p m): (y z) x (yx) (zx).
Proof. dual @dotxcap. Qed.

Lemma Schroeder_r `{laws} `{BL+CNV l} n m p (x : X n m) (y : X m p) (z : X n p):
  xy z !zy° !x.
Proof. dual @Schroeder_l. Qed.

Functors (i.e., monoid morphisms)


Class functor l {X Y: ops} (f': ob X ob Y) (f: {n m}, X n m Y (f' n) (f' m)) := {
  fn_morphism:> n m, morphism l (@f n m);
  fn_dot: n m p (x: X n m) (y: X m p), f (xy) f x f y;
  fn_one: n, f (one n) 1;
  fn_itr `{STR l}: n (x: X n n), f (x^+) (f x)^+;
  fn_str `{STR l}: n (x: X n n), f (x^*) (f x)^*;
  fn_cnv `{CNV l}: n m (x: X n m), f (x°) (f x;
  fn_ldv `{DIV l}: n m p (x: X n m) (y: X n p), f (x -o y) f x -o f y;
  fn_rdv `{DIV l}: n m p (x: X m n) (y: X p n), f (y o- x) f y o- f x
}.

generating a structure by faithful embedding

Lemma laws_of_faithful_functor {h l X Y} {L: laws h Y} {Hl: l h} f' f:
  @functor l X Y f' f
  ( n m x y, f n m x f n m y x y)
  ( n m x y, f n m x f n m y x y)
  laws l X.
  intros Hf Hleq Hweq.
  assert (Hleq_iff: n m x y, f n m x f n m y x y).
   split. apply Hleq. apply fn_leq.
  assert (Hweq_iff: n m x y, f n m x f n m y x y).
   split. apply Hweq. apply fn_weq.
  assert (L' := @lower_laws _ _ _ L Hl).
  constructor; repeat right; intro_vars.
   apply (laws_of_injective_morphism (f n m)); auto using fn_morphism.
   rewrite <-Hweq_iff, 4fn_dot. apply dotA.
   rewrite <-Hweq_iff, fn_dot, fn_one. apply dot1x.
   rewrite <-Hweq_iff, fn_dot, fn_one. apply dotx1.
   repeat intro. apply Hleq. rewrite 2fn_dot. now apply dot_leq; apply Hleq_iff.
   apply Hleq. now rewrite fn_cup, 3fn_dot, fn_cup, dotplsx.
   apply Hleq. now rewrite fn_cup, 3fn_dot, fn_cup, dotxpls.
   apply Hleq. now rewrite fn_dot, 2fn_bot, dot0x.
   apply Hleq. now rewrite fn_dot, 2fn_bot, dotx0.
   intro. apply Hleq. now rewrite fn_cnv, 2fn_dot, 2fn_cnv, cnvdot.
   intro. rewrite <-Hweq_iff, 2fn_cnv. apply cnv_invol.
   repeat intro. apply Hleq. rewrite 2fn_cnv. now apply cnv_leq; apply Hleq_iff.
   apply Hleq. rewrite 2fn_dot,fn_cnv. apply cnv_ext.
   intro. apply Hleq. rewrite fn_one, fn_str. apply str_refl.
   intro. apply Hleq. rewrite fn_str, fn_dot, fn_str. apply str_cons.
   intro. rewrite <-2Hleq_iff, 2fn_dot, fn_str. apply str_ind_l.
   rewrite <-2Hleq_iff, 2fn_dot, fn_str. apply str_ind_r.
   intro. apply Hweq. rewrite fn_itr, fn_dot, fn_str. apply itr_str_l.
   intro. apply Hleq. rewrite fn_cap,2fn_dot,fn_cap,fn_dot,fn_cnv. apply capdotx.
   intro. rewrite <-2Hleq_iff, fn_dot, fn_ldv. apply ldv_spec.
   intro. rewrite <-2Hleq_iff, fn_dot, fn_rdv. apply rdv_spec.
Qed.

injection from Booleans into monoids (actually a functor, although we don't need it)
Definition ofbool {X: ops} {n} (a: bool): X n n := if a then 1 else 0.
Global Arguments ofbool {_ _} !_ /.

ML modules
Declare ML Module "coq-relation-algebra.common".
Declare ML Module "coq-relation-algebra.fold".

tricks for reification
Lemma catch_weq `{L: laws} n m (x y: X n m):
  (let L:=L in x <=[false]= y) x y.
Proof. trivial. Defined.
Lemma catch_leq `{L: laws} n m (x y: X n m):
  (let L:=L in x <=[true]= y) x y.
Proof. trivial. Defined.

Ltac catch_rel := apply catch_weq || apply catch_leq.