Library RelationAlgebra.rewriting_aac

rewriting_aac: bridge with AAC_tactics


Require Import monoid.

From AAC_tactics
Require Export AAC.

Section lattice.
Context `{lattice.laws}.

Global Instance aac_cupA `{CUP l} : Associative weq cup := cupA.
Global Instance aac_cupC `{CUP l} : Commutative weq cup := cupC.
Global Instance aac_cupI `{CUP l} : Idempotent weq cup := cupI.
Global Instance aac_cupU `{BOT+CUP l} : Unit weq cup bot := Build_Unit _ _ _ cupbx cupxb.

Global Instance aac_capA `{CAP l} : Associative weq cap := capA.
Global Instance aac_capC `{CAP l} : Commutative weq cap := capC.
Global Instance aac_capI `{CAP l} : Idempotent weq cap := capI.
Global Instance aac_capU `{TOP+CAP l} : Unit weq cap top := Build_Unit _ _ _ captx capxt.

Global Instance aac_lift_leq_weq : AAC_lift leq weq.
Proof. constructor; eauto with typeclass_instances. Qed.

End lattice.

Section monoid.
Context `{monoid.laws} {n: ob X}.
Global Instance aac_dotA: Associative weq (dot n n n) := (@dotA _ _ _ n n n n).
Global Instance aac_dotU: Unit weq (dot n n n) (one n).
Proof. constructor; intro. apply dot1x. apply dotx1. Qed.
End monoid.