braidHymo.Rmd
One type (1 x rivdata
) or two types of files (n x rivdata
+ rivers
) must be provided: see details below.
rivdata
There must be as many rivdata
files as there are rivers considered.
One rivdata
file corresponds to
ID
)RASTERVALU
)rivers
(optional)
To calculate the indices on multiple rivers, a table rivers
containing information about the rivers should be provided.
The table should contain
rivdata
filepaths)area
)points_space
)rivdata
filepath (typically named filepath
)Other columns might refer to e.g. river name, year, etc.
rivers=readr::read_csv("../data-raw/rivers.csv") %>%
mutate(filepath=paste0("../data-raw/",filepath)) %>%
mutate(year=as.factor(year))
#> Rows: 2 Columns: 6
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (3): river, reach, filepath
#> dbl (3): year, area, points_space
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
# Display the resulting table:
rivers
#> # A tibble: 2 × 6
#> river reach year area points_space filepath
#> <chr> <chr> <fct> <dbl> <dbl> <chr>
#> 1 Drac Chabottes 2018 253 1 ../data-raw/Drac_Chabottes_2018.txt
#> 2 Durance Brillanne 2017 7850 1 ../data-raw/Durance_Brillanne_2017…
rivdata
with braidHymo_read()
data_Drac=braidHymo_read("../data-raw/Drac_Chabottes_2018.txt")
# Display the first lines of the resulting table:
head(data_Drac)
#> # A tibble: 6 × 2
#> ID_XS Z
#> <int> <dbl>
#> 1 232 1030.
#> 2 231 1030.
#> 3 231 1030.
#> 4 231 1030.
#> 5 231 1030.
#> 6 231 1030.
result_Drac=braidHymo_one(data_Drac,
area=253,
points_space=1)
#> Warning in braidHymo_one(data_Drac, area = 253, points_space = 1): The cross-
#> sections with ID 232 contain only one measure.
# Display the first lines of the resulting table:
head(result_Drac)
#> # A tibble: 6 × 6
#> Nb_mean_meas XS_onlyone variable type stat value
#> <dbl> <dbl> <chr> <chr> <chr> <dbl>
#> 1 109. 0.431 BRI_mean BRI* mean 0.00347
#> 2 109. 0.431 BRI_SD BRI* SD 0.00187
#> 3 109. 0.431 BRI_min BRI* min 0.00114
#> 4 109. 0.431 BRI_max BRI* max 0.0136
#> 5 109. 0.431 W_mean W* mean 9.50
#> 6 109. 0.431 W_SD W* SD 2.71
Here, we generalise this to 2 rivers.
The function braidHymo()
retrieves from table rivers
all the necessary information about rivers, and paths to rivdata filepaths.
result=braidHymo(rivers)
#> Warning in .f(rivdata = .l[[1L]][[i]], area = .l[[2L]][[i]], points_space
#> = .l[[3L]][[i]], : The cross-sections with ID 232 contain only one measure.
# Display the first lines of the resulting table:
head(result)
#> # A tibble: 6 × 12
#> river reach year area points_space filepath Nb_mean_meas XS_onlyone variable
#> <chr> <chr> <fct> <dbl> <dbl> <chr> <dbl> <dbl> <chr>
#> 1 Drac Chab… 2018 253 1 ../data… 109. 0.431 BRI_mean
#> 2 Drac Chab… 2018 253 1 ../data… 109. 0.431 BRI_SD
#> 3 Drac Chab… 2018 253 1 ../data… 109. 0.431 BRI_min
#> 4 Drac Chab… 2018 253 1 ../data… 109. 0.431 BRI_max
#> 5 Drac Chab… 2018 253 1 ../data… 109. 0.431 W_mean
#> 6 Drac Chab… 2018 253 1 ../data… 109. 0.431 W_SD
#> # … with 3 more variables: type <chr>, stat <chr>, value <dbl>
It is then possible to graphically display the results for these rivers using function braidHymo_plot()
:
braidHymo_plot(result,index="BRI*", position=year, color=river)
braidHymo_plot(result,index="W*", position=year, color=river)
When using this package, please refer to Devreux et al. (2021).