The list of my publications can be found on my Google Scholar profile.


  1. A. Svirsky, C. Herbert, and A. Frishman. Two-dimensional turbulence with local interactions: statistics of the condensate. 2023. arXiv:2305.01574.


  1. A. Fuchs, C. Herbert, J. Rolland, M. Wächter, F. Bouchet, and J. Peinke. Instantons and the path to intermittency in turbulent flows. Phys. Rev. Lett., 129:034502, 2022. arXiv:2106.08790, doi:10.1103/PhysRevLett.129.034502.
  2. D. Lucente, C. Herbert, and F. Bouchet. Committor Functions for Climate Phenomena at the Predictability Margin: The example of El Niño Southern Oscillation in the Jin and Timmerman model. J. Atmos. Sci., 79:2387–2400, 2022. arXiv:2106.14990, doi:10.1175/JAS-D-22-0038.1.
  3. D. Lucente, J. Rolland, C. Herbert, and F. Bouchet. Coupling rare event algorithms with data-based learned committor functions using the analogue markov chain. J. Stat. Mech, 2022:083201, 2022. arXiv:2110.05050, doi:10.1088/1742-5468/ac7aa7.


  1. C. Herbert, R. Caballero, and F. Bouchet. Atmospheric bistability and abrupt transitions to superrotation: wave-jet resonance and Hadley cell feedbacks. J. Atmos. Sci., 77:31–49, 2020. arXiv:1905.12401, doi:10.1175/JAS-D-19-0089.1.


  1. D. Lucente, S. Duffner, C. Herbert, J. Rolland, and F. Bouchet. Machine learning of committor functions for predicting high impact climate events. In J. Brajard, A. Charantonis, C. Chen, and J. Runge, editors, Proceedings of the 9th International Workshop on Climate Informatics: CI 2019. NCAR, 2019. arXiv:1910.11736, doi:10.5065/y82j-f154.


  1. A. Frishman and C. Herbert. Turbulence Statistics in a Two-Dimensional Vortex Condensate. Phys. Rev. Lett., 120:204505, 2018. doi:10.1103/PhysRevLett.120.204505.
  2. T. Lestang, F. Ragone, C.-E. Bréhier, C. Herbert, and F. Bouchet. Computing return times or return periods with rare event algorithms. J. Stat. Mech., 2018:043213, 2018. doi:10.1088/1742-5468/aab856.
  3. A. Pouquet, D. Rosenberg, R. Marino, and C. Herbert. Scaling laws for mixing and dissipation in unforced rotating stratified turbulence. J. Fluid. Mech., 844:519–545, 2018. doi:10.1017/jfm.2018.192.


  1. C. Herbert and F. Bouchet. Predictability of escape for a stochastic saddle-node bifurcation: when rare events are typical. Phys. Rev. E, 96:030201(R), 2017. doi:10.1103/PhysRevE.96.030201.


  1. C. Herbert, R. Marino, A. Pouquet, and D. Rosenberg. Waves and vortices in the inverse cascade regime of stratified turbulence with or without rotation. J. Fluid Mech., 806:165–204, 2016. doi:10.1017/jfm.2016.581.
  2. D. Rosenberg, R. Marino, A. Pouquet, and C. Herbert. Variations of characteristic time-scales in rotating stratified turbulence using a large parametric numerical study. Eur. Phys. J. E, 39:8, 2016. doi:10.1140/epje/i2016-16008-7.


  1. C. Herbert. An Introduction to Large Deviations and Equilibrium Statistical Mechanics for Turbulent Flows. In S. Heinz and H. Bessaih, editors, Stochastic Equations for Complex Systems: Theoretical and Computational Topics, chapter 3, pages 53–84. Springer, 2015. doi:10.1007/978-3-319-18206-3_3.
  2. R. Marino, D. Rosenberg, C. Herbert, and A. Pouquet. Interplay of waves and eddies in rotating stratified turbulence and the link with kinetic-potential energy partition. EPL, 112(4):49001, 2015. doi:10.1209/0295-5075/112/49001.


  1. C. Herbert. Nonlinear energy transfers and phase diagrams for geostrophically balanced rotating-stratified flows. Phys. Rev. E, 89:033008, 2014. doi:10.1103/PhysRevE.89.033008.
  2. C. Herbert. Peut-on connaître le climat sans connaître la météo? La Météorologie, 85:17–26, 2014.
  3. C. Herbert. Restricted Partition Functions and Inverse Energy Cascades in parity symmetry breaking flows. Phys. Rev. E, 89:013010, 2014. doi:10.1103/PhysRevE.89.013010.
  4. C. Herbert and D. Paillard. Predictive use of the Maximum Entropy Production principle for Past and Present Climates. In R. Dewar, C. Lineweaver, R. Niven, and K. Regenauer-Lieb, editors, Beyond The Second Law: Entropy Production and Non-Equilibrium Systems, Understanding Complex Systems, chapter 9, pages 185–199. Springer, 2014. doi:10.1007/978-3-642-40154-1_9.
  5. C. Herbert, A. Pouquet, and R. Marino. Restricted Equilibrium and the Energy Cascade in Rotating and Stratified Flows. J. Fluid Mech., 758:374–406, 2014. doi:10.1017/jfm.2014.540.
  6. V. Lucarini, R. Blender, C. Herbert, S. Pascale, F. Ragone, and J. Wouters. Mathematical and Physical Ideas for Climate Science. Rev. Geophys., 52:809–859, 2014. doi:10.1002/2013RG000446.
  7. M. Mihelich, B. Dubrulle, D. Paillard, and C. Herbert. Maximum Entropy Production vs. Kolmogorov-Sinaï entropy in a constrained ASEP model. Entropy, 16:1037–1046, 2014. doi:10.3390/e16021037.


  1. C. Herbert. Additional invariants and statistical equilibria for the 2D Euler equations on a spherical domain. J. Stat. Phys., 152:1084–1114, 2013. doi:10.1007/s10955-013-0809-6.
  2. C. Herbert, D. Paillard, and B. Dubrulle. Vertical Temperature Profiles at Maximum Entropy Production with a Net Exchange Radiative Formulation. J. Climate, 26:8545–8555, 2013. doi:10.1175/JCLI-D-13-00060.1.
  3. D. Paillard and C. Herbert. Maximum entropy production and time varying problems: the seasonal cycle in a conceptual climate model. Entropy, 15:2846–2860, 2013. doi:10.3390/e15072846.


  1. C. Herbert, B. Dubrulle, P.-H. Chavanis, and D. Paillard. Phase transitions and marginal ensemble equivalence for freely evolving flows on a rotating sphere. Phys. Rev. E, 85:056304, 2012. doi:10.1103/PhysRevE.85.056304.
  2. C. Herbert, B. Dubrulle, P.-H. Chavanis, and D. Paillard. Statistical mechanics of quasi-geostrophic flows on a rotating sphere. J. Stat. Mech., 2012:P05023, 2012. doi:10.1088/1742-5468/2012/05/P05023.


  1. C. Herbert, D. Paillard, and B. Dubrulle. Entropy production and multiple equilibria: the case of the ice-albedo feedback. Earth Syst. Dynam., 2:13–23, 2011. doi:10.5194/esd-2-13-2011.
  2. C. Herbert, D. Paillard, M. Kageyama, and B. Dubrulle. Present and Last Glacial Maximum climates as states of maximum entropy production. Q. J. R. Meteorol. Soc., 137:1059–1069, 2011. doi:10.1002/qj.832.