Library GraphTheory.excluded
Require Import Setoid Morphisms.
From mathcomp Require Import all_ssreflect.
Require Import edone preliminaries set_tac.
Require Import digraph sgraph treewidth minor connectivity.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Set Bullet Behavior "Strict Subproofs".
From mathcomp Require Import all_ssreflect.
Require Import edone preliminaries set_tac.
Require Import digraph sgraph treewidth minor connectivity.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Set Bullet Behavior "Strict Subproofs".
Ltac notHyp b ::= assert_fails (assert b by assumption).
Prenex Implicits vseparator.
Implicit Types G H : sgraph.
Arguments sdecomp : clear implicits.
Arguments rename_decomp [T G H D].
Section AddEdgeMinor.
Variables (G : sgraph) (x y : G) (V1 V2 : {set G}).
Let G' := add_edge x y.
Lemma unused_add_edge_connect_r (A : {pred G}) :
y \notin A → subrel (restrict A (@sedge G')) (restrict A (@sedge G)).
Proof.
move⇒ yNA u v /=; rewrite -!andbA ⇒ /and3P [uA vA].
gen have H,-> : u uA / u == y = false; first by apply:contraTF uA ⇒ /eqP→.
by rewrite (H v) // !andbF !orbF uA vA.
Qed.
Lemma unused_rmap_add_edge_r (M : sgraph) (phi : M → {set G'}) :
(∀ i, y \notin phi i) → minor_rmap phi → @minor_rmap G M phi.
Proof.
move ⇒ y_unused [P1 P2 P3 P4].
have Y u i : u \in phi i → u == y = false by apply: contraTF ⇒ /eqP →.
split ⇒ //; last by move ⇒ i j ij; apply: neighbor_del_edge2 (P4 i j ij).
move ⇒ i u v u_pi v_pi; have:= P2 i u v u_pi v_pi.
exact/connect_mono/unused_add_edge_connect_r/y_unused.
Qed.
Hypothesis xDy : x != y.
Hypothesis psepV : proper_separation V1 V2.
Let S := V1 :&: V2.
Hypothesis defS : S = [set x;y].
Hypothesis ssepS : smallest vseparator S.
Lemma add_edge_rmap_separation_minor (M : sgraph) (phi : M → {set G'}) :
minor_rmap phi → (∀ u, phi u \subset V1) → minor G M.
Proof.
move ⇒ rmap_phi sub_phi.
have [/existsP[i] y_phi_i|/existsPn Y] := boolP [∃ i, y \in phi i]; last first.
by have := unused_rmap_add_edge_r Y rmap_phi; apply: minor_of_rmap.
have x_S : x \in S by rewrite defS !inE eqxx.
have [_ [z [_ zNV1 _ xz]]] := svseparator_neighbours psepV ssepS x_S.
have [p irp dis] : exists2 p : Path z y, irred p & [disjoint p & [set x]].
{ apply: (@avoid_nonseperator G [set x] z y).
- by apply: below_smallest ssepS _; rewrite defS cards1 cards2 xDy.
- by rewrite inE eq_sym ?(sg_edgeNeq xz).
- by rewrite inE eq_sym. }
rewrite disjoint_sym disjoints1 in dis.
have pV2: p \subset V2.
{ apply: contraTT isT ⇒ /subsetPn [z' z'p z'NV2].
case/psplitP: _ / z'p irp dis ⇒ {p} [p1 p2] /irred_catE [_ _ Ip] s1p.
move/proper_separation_symmetry : (psepV) ⇒ psepV'.
case: (separation_separates psepV'.1 zNV1 z'NV2) ⇒ _ _ /(_ p1) [s S1].
rewrite setIC -/S defS ⇒ /set2P [?|?]; subst s; first by set_tac.
rewrite -(Ip y) // in z'NV2.
by move/setP/(_ y) : defS; rewrite /S !inE (negbTE z'NV2) eqxx orbT andbF. }
pose g := phi[upd i := phi i :|: [set v in p]] : M → {set G}.
suff: minor_rmap g by apply minor_of_rmap.
have [P1 P2 P3 P4] := rmap_phi.
rewrite /g; split.
- move⇒ j; have [->{j}|jDi] := eqVneq j i; rewrite updateE //.
by case/set0Pn : (P1 i) ⇒ v v_pi; apply/set0Pn; ∃ v; rewrite inE v_pi.
- move⇒ j; have [->{j}|jDi] := eqVneq j i; rewrite updateE //; last first.
move ⇒ u v u_pj v_pj; apply: connect_mono (P2 j u v u_pj v_pj).
by apply/unused_add_edge_connect_r; rewrite (disjointFl (P3 _ _ jDi)).
apply: (@connected_center _ y) ⇒ [u|]; last by rewrite inE y_phi_i.
case/setUP ⇒ [u_phi_i|]; last first.
+ rewrite !inE srestrict_sym ⇒ u_p.
case/psplitP def_p : _ / u_p ⇒ [p1 p2].
by apply: (connectRI p2) ⇒ v; rewrite !inE ⇒ →.
+ have [<- //|yDu] := eqVneq y u.
have/connect_irredRP-/(_ yDu) [q Iq q_sub_i] := P2 _ _ _ y_phi_i u_phi_i.
have [v [yv [q' [def_q _]]]] := splitL q yDu.
have v_phi_i : v \in phi i by rewrite (subsetP q_sub_i) // def_q !inE.
apply: (@connect_trans _ _ v); last first.
× have yNq : y \notin q' by move: Iq; rewrite def_q irred_edgeL ⇒ /andP[->].
have := add_edge_avoid q'; rewrite yNq orbT /= ⇒ /(_ isT) [q'' eq_q].
apply: (connectRI q'') ⇒ w; rewrite !inE mem_path eq_q ⇒ w_q.
by rewrite (subsetP q_sub_i) // def_q !inE !mem_path w_q.
× move: (yv). rewrite /edge_rel/= eqxx [v == y]eq_sym (sg_edgeNeq yv).
rewrite !(andbF,andbT)/= orbC ⇒ /predU1P [eq_vx|yvG]; last first.
by apply: connect1 ⇒ /=; rewrite !inE v_phi_i.
subst v. apply: (@connect_trans _ _ z); last first.
by apply: connect1 ⇒ /=; rewrite !inE v_phi_i sgP.
by rewrite srestrict_sym; apply: (connectRI p) ⇒ w; rewrite !inE ⇒ →.
- move ⇒ j k jDk; have [i_jk|] := boolP (i \in [set j; k]); last first.
rewrite !inE negb_or ![i == _]eq_sym ⇒ /andP[? ?].
by rewrite !updateE // P3.
wlog ?: j k jDk {i_jk} / i = j ⇒ [W|]; last subst j.
case/set2P : i_jk; last rewrite disjoint_sym; apply: W ⇒ //.
by rewrite eq_sym.
rewrite !updateE 1?eq_sym // disjointsU // ?P3 // disjoint_subset.
apply/subsetP ⇒ v; rewrite !inE ⇒ v_p; apply: contraNN dis ⇒ v_phi_k.
have: v \in S by apply/setIP; rewrite (subsetP pV2) // (subsetP (sub_phi k)).
rewrite defS ⇒ /set2P [<- //|vEy].
by rewrite vEy (disjointFr (P3 _ _ jDk)) in v_phi_k.
- move⇒ j k jk; have [i_jk|] := boolP (i \in [set j; k]); last first.
{ rewrite !inE negb_or ![i == _]eq_sym ⇒ /andP[A B].
rewrite !updateE // neighbor_del_edge2 // ?P4 //.
all: by rewrite ?(disjointFl (P3 _ _ A)) ?(disjointFl (P3 _ _ B)). }
wlog ?: j k jk {i_jk} / i = j ⇒ [W|]; last subst j.
case/set2P : i_jk; first exact: W.
by rewrite neighborC; apply: W; rewrite // sgP.
rewrite !updateE 1?eq_sym ?sg_edgeNeq //.
have/neighborP[u[v [u_phi_i v_phi_k]]] := P4 _ _ jk.
have dis_ij w w' : w \in phi i → w' \in phi k → w' == w = false.
{ move ⇒ A B. apply: contraTF jk ⇒ /eqP ?; subst w'.
by rewrite (rmap_disjE rmap_phi A B) sgP. }
rewrite /edge_rel/= (dis_ij _ _ y_phi_i v_phi_k) !andbF.
rewrite (dis_ij _ _ u_phi_i v_phi_k) /= ⇒ /orP [uv|/andP[/eqP? /eqP?]].
by apply/neighborP; ∃ u,v; rewrite !inE u_phi_i v_phi_k uv.
by subst v u; apply/neighborP; ∃ z,x; rewrite !inE v_phi_k sgP xz.
Qed.
Lemma add_edge_separation_minor M : minor (@induced G' V1) M → minor G M.
Proof.
move⇒ minorM.
suff [phi]: exists2 phi : M → {set G'}, minor_rmap phi & ∀ u, phi u \subset V1.
exact: add_edge_rmap_separation_minor.
case/minorRE : minorM ⇒ phi rmap_phi.
pose phi' (u : M) := \bigcup_(v in phi u) induced_rmap v : {set G'}.
∃ phi'; first by apply: minor_rmap_comp ⇒ //; apply: induced_rmapP.
move⇒ u. apply/bigcupsP⇒ v ?. exact: induced_rmap_sub.
Qed.
Lemma add_edge_separation_excluded M :
¬ minor G M → ¬ minor (@induced G' V1) M.
Proof. exact/contra_not/add_edge_separation_minor. Qed.
End AddEdgeMinor.
Lemma connectedI_clique (G : sgraph) (A B S : {set G}) :
connected A → clique S →
(∀ x y (p : Path x y), p \subset A → x \in B → y \notin B →
exists2 z, z \in p & z \in S :&: B) →
connected (A :&: B).
Proof.
move ⇒ conA clS H x y /setIP [X1 X2] /setIP [Y1 Y2].
case: (altP (x =P y)) ⇒ [->|xDy]; first exact: connect0.
case/connect_irredRP : (conA _ _ X1 Y1) ⇒ // p Ip subA.
case: (boolP (p \subset B)) ⇒ subB.
- apply connectRI with p ⇒ z zp. by set_tac.
- case/subsetPn : subB ⇒ z Z1 Z2.
gen have C,Cx : x y p Ip subA X1 X2 Y1 Y2 Z1 Z2 {xDy} /
exists2 s, s \in S :&: A :&: B & connect (restrict (A :&: B) sedge) x s.
{ case: (split_at_first (A := [predC B]) Z2 Z1) ⇒ u' [p1] [p2] [P1 P2 P3].
subst p. case/irred_catE : Ip ⇒ Ip1 Ip2 Ip.
case/splitR : (p1); first by apply: contraNneq P2 ⇒ <-.
move ⇒ u [p1'] [uu'] E. subst p1.
have uB : u \in B. apply: contraTT (uu') ⇒ C. by rewrite [u]P3 ?sgP // !inE.
∃ u. case: (H _ _ (edgep uu')) ⇒ //.
- apply: subset_trans subA.
apply: subset_trans (subset_pcatL _ _). exact: subset_pcatR.
- move ⇒ ?. rewrite !inE mem_edgep. case/orP ⇒ /eqP→ /andP[U1 U2].
+ by rewrite U1 U2 (subsetP subA) // !inE.
+ by rewrite !inE U2 in P2.
- apply connectRI with p1' ⇒ v Hv.
rewrite !inE (subsetP subA) ?inE ?Hv //=.
move: Ip1. rewrite irred_edgeR andbC ⇒ /andP [Ip1].
apply: contraNT ⇒ C. by rewrite -(P3 v) // !inE Hv. }
case: Cx ⇒ s. rewrite !inE -andbA ⇒ /and3P [S1 S2 S3 S4].
case: (C _ _ (prev p)); rewrite ?mem_prev ?irred_rev //.
+ apply: subset_trans subA. apply/subsetP ⇒ ?. by rewrite !inE.
+ move ⇒ t. rewrite !inE -andbA ⇒ /and3P [T1 T2 T3 T4].
apply: connect_trans S4 _. rewrite srestrict_sym.
apply: connect_trans T4 _. case: (altP (t =P s)) ⇒ [-> //|E].
apply: connect1 ⇒ /=. by rewrite !inE clS.
Qed.
only needed for K4_free_add_edge_sep_size2
Lemma separation_K4side G (V1 V2 : {set G}) :
separation V1 V2 → clique (V1 :&: V2) → #|V1 :&: V2| ≤ 2 →
minor G K4 →
exists2 phi : K4 → {set G}, minor_rmap phi &
(∀ x, phi x \subset V1) ∨ (∀ x, phi x \subset V2).
Proof.
move ⇒ sepV clV12 cardV12 /minorRE [phi] [P1 P2 P3 P4].
wlog/forallP cutV1 : V1 V2 sepV clV12 cardV12 / [∀ x, phi x :&: V1 != set0].
{ move ⇒ W.
case: (boolP [∀ x, phi x :&: V1 != set0]) ⇒ A; first exact: (W V1 V2).
case: (boolP [∀ x, phi x :&: V2 != set0]) ⇒ B.
{ setoid_rewrite <- or_comm. by apply: W; rewrite 1?setIC // separation_sym. }
case: notF. case/forallPn : A ⇒ i /negPn Hi. case/forallPn : B ⇒ j /negPn Hj.
case: (altP (i =P j)) ⇒ [E|E].
- subst j. case/set0Pn : (P1 i) ⇒ x Hx. case/setUP : (sepV.1 x) ⇒ Hx'.
+ move/eqP/setP/(_ x) : Hi. by rewrite !inE Hx Hx'.
+ move/eqP/setP/(_ x) : Hj. by rewrite !inE Hx Hx'.
- move/neighborP : (P4 i j E) ⇒ [x] [y] [A B]. rewrite sgP sepV //.
apply: contraTN Hj ⇒ Hy. by apply/set0Pn; ∃ y; rewrite inE B.
apply: contraTN Hi ⇒ Hx. by apply/set0Pn; ∃ x; rewrite inE A. }
set S := V1 :&: V2 in clV12 cardV12.
have phiP i y : y \in phi i → y \notin V1 → phi i :&: S != set0.
{ case/set0Pn : (cutV1 i) ⇒ x /setIP [xpi xV1 ypi yV1].
case: (boolP (x \in V2)) ⇒ xV2; first by apply/set0Pn; ∃ x; rewrite !inE.
case/connect_irredRP : (P2 i x y xpi ypi); first by apply: contraNneq yV1 ⇒ <-.
move ⇒ p Ip subP.
have [_ _ /(_ p)] := separation_separates sepV xV2 yV1.
case ⇒ z /(subsetP subP) ⇒ ? ?. apply/set0Pn; ∃ z. by rewrite /S inD. }
pose phi' (i : K4) := phi i :&: V1.
∃ phi'; first split.
- move ⇒ i. exact:cutV1.
- move ⇒ i. apply connectedI_clique with S ⇒ //.
+ move ⇒ x y p sub_phi Hx Hy. case: (boolP (x \in V2)) ⇒ Hx'.
× ∃ x ⇒ //. by rewrite /S inD.
× have [_ _ /(_ p) [z ? ?]] := (separation_separates sepV Hx' Hy).
∃ z ⇒ //. by rewrite /S inD.
- move ⇒ i j /P3 ⇒ D. apply: disjointW D; exact: subsetIl.
- move ⇒ i j ij. move/P4/neighborP : (ij) ⇒ [x] [y] [H1 H2 H3].
have S_link u v : u \in S → v \in S → u \in phi i → v \in phi j → u -- v.
{ have D: [disjoint phi i & phi j] by apply: P3; rewrite sg_edgeNeq.
move ⇒ H ×. apply: clV12 ⇒ //. by apply: contraTneq H ⇒ ?; set_tac. }
have/subsetP subV : S \subset V1 by exact: subsetIl.
have inS u v : u -- v → u \in V1 → v \notin V1 → u \in S.
{ move ⇒ uv HVu HVv. apply: contraTT uv ⇒ /= C. subst S.
by rewrite sepV // notinD. }
apply/neighborP. case: (boolP (x \in V1)) ⇒ HVx; case: (boolP (y \in V1)) ⇒ HVy.
+ ∃ x; ∃ y. by rewrite !inE HVx HVy.
+ case/set0Pn : (phiP _ _ H2 HVy) ⇒ s /setIP [S1 S2].
∃ x; ∃ s. rewrite !inE H1 HVx S1 S_link // ?subV //. exact: inS HVy.
+ case/set0Pn : (phiP _ _ H1 HVx) ⇒ s /setIP [S1 S2].
∃ s; ∃ y. rewrite !inE H2 HVy S1 S_link // ?subV //.
apply: inS HVx ⇒ //. by rewrite sgP.
+ case/set0Pn : (phiP _ _ H1 HVx) ⇒ s /setIP [S1 S2].
case/set0Pn : (phiP _ _ H2 HVy) ⇒ s' /setIP [S3 S4].
∃ s; ∃ s'. by rewrite !inE S1 S3 S_link // !subV.
- left ⇒ x. exact: subsetIr.
Qed.
Lemma K4_of_paths (G : sgraph) x y s0 s1' (p0 p1 p2 : Path x y) (q1 : Path s0 s1') :
x!=y → independent p0 p1 → independent p0 p2 → independent p1 p2 →
s0 \in interior p0 → s1' \in interior p1 →
irred p0 → irred p1 → irred p2 → irred q1 →
[disjoint q1 & [set x; y]] →
(∀ z' : G, z' \in [predU interior p1 & interior p2] → z' \in q1 → z' = s1') →
minor G K4.
Proof.
move ⇒ xDy ind01 ind02 ind12 sp0 in_p1 Ip0 Ip1 Ip2 Iq av_xy s1'firstp12.
pose phi (i : K4) := match i with
| Ordinal 0 _ ⇒ [set x]
| Ordinal 1 _ ⇒ interior p0 :|: interior q1
| Ordinal 2 _ ⇒ interior p1
| Ordinal 3 _ ⇒ y |: interior p2
| Ordinal p n ⇒ set0
end.
suff: minor_rmap phi by apply minor_of_rmap.
split.
- move ⇒ [m i]. case m as [|[|[|[|m]]]] ⇒ //=; apply /set0Pn.
+ ∃ x. by set_tac.
+ ∃ (s0). by rewrite inE sp0.
+ by ∃ s1'.
+ ∃ y. by set_tac.
- move ⇒ [m i]. case m as [|[|[|[|m]]]] ⇒ //=.
+ exact: connected1.
+ case: (altP (interior q1 =P set0)) ⇒ [->|H].
× rewrite setU0. exact: connected_interior.
× apply: neighbor_connected; try exact: connected_interior.
exact: path_neighborL.
+ exact: connected_interior.
+ exact: connected_interiorR.
- move ⇒ i j iNj. wlog iltj: i j {iNj} / i < j.
{ move ⇒ H. rewrite /= neq_ltn in iNj.
move: iNj ⇒ /orP [iltj|jlti]; [|rewrite disjoint_sym]; exact: H. }
destruct i as [m i]. destruct j as [n j].
case m as [|[|[|[|m]]]] ⇒ //=; case n as [|[|[|[|m']]]] ⇒ //=.
+ rewrite disjoints1. rewrite inE negb_or /interior notinD /=.
have: (x \in [set x; y]); by set_tac.
+ rewrite disjoints1. by rewrite /interior; set_tac.
+ rewrite disjoints1. by rewrite /interior; set_tac.
+ apply: disjointsU ⇒ //. apply/disjointP ⇒ z Z1 Z2.
suff: z = s1' by move: Z1 Z2; rewrite /interior; set_tac.
apply: s1'firstp12. by rewrite inE /= Z2. exact: interiorW.
+ apply: disjointsU ⇒ //.
× rewrite disjoint_sym. apply: disjointsU.
-- rewrite /interior. apply/disjointP; by set_tac.
-- by rewrite disjoint_sym.
× rewrite disjoint_sym. apply: disjointsU.
-- apply/disjointP. rewrite /interior. have: (y \in [set x; y]); by set_tac.
-- apply/disjointP ⇒ z Z1 Z2.
suff: z = s1' by move: Z1 Z2; rewrite /interior; set_tac.
apply: s1'firstp12. by rewrite inE /= Z1. exact: interiorW.
+ rewrite disjoint_sym. apply: disjointsU.
× rewrite disjoints1 /interior. by set_tac.
× by rewrite disjoint_sym.
- move ⇒ i j iNj. wlog iltj: i j {iNj} / i < j.
{ move ⇒ H. rewrite /edge_rel /= neq_ltn in iNj.
move: iNj ⇒ /orP [iltj|jlti]; [|rewrite neighborC]; exact: H. }
destruct i as [m i]. destruct j as [n j].
have [[? ?] ?] := (valP (p0),valP p1, valP p2).
case m as [|[|[|[|m]]]] ⇒ //=; case n as [|[|[|[|m']]]] ⇒ //=.
+ apply: neighborUl. apply: path_neighborL ⇒ //; by set_tac.
+ apply: path_neighborL ⇒ //; by set_tac.
+ exact: neighbor_interiorL.
+ case: (altP (interior q1 =P set0)) ⇒ [E|H].
× rewrite E setU0. apply/neighborP; ∃ (s0); ∃ s1'. split ⇒ //.
case/interior0E : E ⇒ //. apply: contraTneq ind01.
rewrite /independent; set_tac.
× rewrite neighborC. apply: neighborUr. exact: path_neighborR.
+ apply: neighborUl. rewrite neighborC. apply: neighborUl.
apply: path_neighborR ⇒ //; by set_tac.
+ apply: neighborUl. rewrite neighborC. apply: path_neighborR ⇒ //; by set_tac.
Qed.
Lemma K4_of_vseparators (G : sgraph) :
3 < #|G| → (∀ S : {set G}, vseparator S → 2 < #|S|) → minor G K4.
Proof.
move ⇒ G4elt minsep3.
case: (boolP (cliqueb [set: G])) ⇒ [|/cliquePn [x] [y] [_ _ xNy xNEy]].
{ move/cliqueP. apply: minor_of_clique. by rewrite cardsT. }
have minsep_xy S : separates x y S → 3 ≤ #|S|.
{ move ⇒ A. apply: minsep3. by ∃ x; ∃ y. }
case: (theta xNEy xNy minsep_xy) ⇒ p ind_p.
case: (theta_vertices p xNy xNEy) ⇒ s Hs.
pose p1 := p ord1. pose p2 := p ord2.
pose s1 := s ord1. pose s2 := s ord2.
have ind12 : independent p1 p2 by apply: ind_p.
have ind01 : independent (p ord0) p1 by apply: ind_p.
have ind02 : independent (p ord0) p2 by apply: ind_p.
have sp1 : s1 \in interior p1 by rewrite Hs.
have sp2 : s2 \in interior p2 by rewrite Hs.
case (@avoid_nonseperator G [set x; y] (s ord0) (s1)) ⇒ //; try (apply: interiorN; eauto).
{ move/minsep3. by rewrite cards2 xNy. }
move ⇒ q Iq av_xy.
case: (@split_at_first G [predU interior p1 & interior p2] (s ord0) s1 q s1) ⇒ //.
{ by rewrite inE /= sp1. }
move ⇒ s1' [q1 [q2 [catp s1'p12 s1'firstp12]]].
subst q. case/irred_catE : Iq ⇒ Iq _ _.
have {av_xy} av_xy : [disjoint q1 & [set x; y]] by apply/disjointP ⇒ z; set_tac.
wlog in_p1: p1 p2 s1 s2 ind01 ind02 ind12 sp1 {sp2} {q2 s1'p12} s1'firstp12 / s1' \in interior p1.
{ move ⇒ W. case/orP: (s1'p12) ⇒ /= [s1'p1|s1'p2].
- by apply W with p1 p2 s1.
- apply W with p2 p1 s2 ⇒ //. by apply: independent_sym.
move ⇒ z' H1 H2. apply s1'firstp12 ⇒ //. move: H1. by rewrite !inE orbC. }
apply K4_of_paths with x y (s ord0) s1' (p ord0) p1 p2 q1 ⇒ //; exact: valP.
Qed.
Lemma no_K4_smallest_vseparator (G : sgraph) :
¬ minor G K4 → #|G| ≤ 3 ∨ (∃ S : {set G}, smallest vseparator S ∧ #|S| ≤ 2).
Proof.
move ⇒ HM. case (boolP (3 < #|G|)) ⇒ sizeG; last by rewrite leqNgt; left.
right. case: (boolP ([∃ (S : {set G} | #|S| ≤ 2), vseparatorb S])).
- case/exists_inP ⇒ /= S sizeS sepS.
case: (arg_minP (fun a : {set G} ⇒ #|a|) sepS) ⇒ U /vseparatorP sepU HU.
∃ U. repeat split ⇒ //.
+ move ⇒ V /vseparatorP. exact: HU.
+ move: (HU S sepS) ⇒ ?. exact: leq_trans sizeS.
- move/exists_inPn ⇒ H. exfalso. apply HM. apply K4_of_vseparators ⇒ //.
move ⇒ S. move: (H S). rewrite unfold_in (rwP (vseparatorP _)) ⇒ H'.
apply: contraTT. by rewrite ltnNge negbK.
Qed.
Lemma add_edge_separation (G : sgraph) V1 V2 s1 s2:
@separation G V1 V2 → s1 \in V1:&:V2 → s2 \in V1:&:V2 →
@separation (add_edge s1 s2) V1 V2.
Proof.
move ⇒ sep s1S s2S. split; first by move ⇒ x; apply sep.
move ⇒ x1 x2 x1V2 x2V1 /=. rewrite /edge_rel/= sep //=.
apply: contraTF isT. case/orP ⇒ [] /and3P[_ /eqP ? /eqP ?]; by set_tac.
Qed.
Theorem TW2_of_K4F (G : sgraph) :
K4_free G → ∃ (T : forest) (B : T → {set G}), sdecomp T G B ∧ width B ≤ 3.
Proof.
elim/card_ind : G ⇒ G Hind K4free.
case (no_K4_smallest_vseparator K4free) =>[|[S [ssepS Ssmall2]]].
{ exact: decomp_small. }
move: (vseparator_separation ssepS.1) ⇒ [V1 [V2 [[sep prop] SV12]]].
move: (prop) ⇒ [x0 [y0 [Hx0 Hy0]]].
case: (ltngtP #|S| 2) Ssmall2 ⇒ // [Sless2|/eqP Ssize2] _.
- have V1properG: #|induced V1| < #|G|.
{ rewrite card_sig. eapply card_ltnT. simpl. eauto. }
have {x0 Hx0 y0 Hy0} V2properG: #|induced V2| < #|G|.
{ rewrite card_sig. eapply card_ltnT. simpl. eauto. }
case: (Hind (induced V1)) ⇒ // [|T1 [B1 [sd1 w1]]].
apply: subgraph_K4_free K4free; exact: induced_sub.
case: (Hind (induced V2)) ⇒ // [|T2 [B2 [sd2 w2]]].
apply: subgraph_K4_free K4free; exact: induced_sub.
have [|T[B [sdB wB]]] := separation_decomp sd1 sd2 sep _.
by rewrite -SV12; exact: small_clique.
by ∃ T,B; split ⇒ //; apply: leq_trans wB _; rewrite geq_max w1 w2.
- case/cards2P : Ssize2 ⇒ s1 [s2] [s1Ns2 S12]; pose G' := add_edge s1 s2.
suff [T[B [dcB wB]]] :
∃ (T : forest) (B : T → {set G'}), sdecomp T G' B ∧ width B ≤ 3.
{ ∃ T,B; split ⇒ //; move: dcB.
destruct G; apply sdecomp_subrel. exact: subrelUl. }
have V1properG: #|@induced G' V1| < #|G|.
{ rewrite card_sig. eapply card_ltnT. simpl. eauto. }
have {x0 Hx0 y0 Hy0} V2properG: #|@induced G' V2| < #|G|.
{ rewrite card_sig. eapply card_ltnT. simpl. eauto. }
case: (Hind (@induced G' V1)) ⇒ // [|T1 [B1 [sd1 w1]]].
{ apply: (@add_edge_separation_excluded G s1 s2 V1 V2) ⇒ //.
by rewrite -SV12 S12. by rewrite -SV12. }
case: (Hind (@induced G' V2)) ⇒ // [|T2 [B2 [sd2 w2]]].
{ apply: (@add_edge_separation_excluded G s1 s2 V2 V1) ⇒ //.
- rewrite proper_separation_symmetry //.
- by rewrite setIC -SV12 S12.
- by rewrite setIC -SV12. }
have [||T [B [sdB wB]]] := @separation_decomp G' _ _ _ _ _ _ sd1 sd2 _ _.
by apply: add_edge_separation ⇒ //; rewrite -SV12 S12 !inE eqxx.
by rewrite -SV12 S12; apply: clique2; rewrite /edge_rel/= !eqxx s1Ns2.
by ∃ T,B; split ⇒ //; apply: leq_trans wB _; rewrite geq_max w1 w2.
Qed.
Theorem excluded_minor_TW2 (G : sgraph) :
K4_free G ↔
∃ (T : forest) (B : T → {set G}), sdecomp T G B ∧ width B ≤ 3.
Proof. split ⇒ [|[T][B][]]. exact: TW2_of_K4F. exact: TW2_K4_free. Qed.
Lemma K4_free_add_edge_sep_size2 (G : sgraph) (s1 s2 : G):
K4_free G → smallest vseparator [set s1; s2] → s1 != s2 → K4_free (add_edge s1 s2).
Proof.
move S12 : [set s1;s2] ⇒ S. move/esym in S12. move ⇒ K4free ssepS s1Ns2 K4G'.
case: (vseparator_separation ssepS.1) ⇒ V1 [V2] [psep SV12].
wlog [phi rmapphi HphiV1] : {K4G'} V1 V2 psep SV12 / exists2 phi : K4 → {set add_edge s1 s2},
minor_rmap phi & ∀ x : K4, phi x \subset V1.
{ move ⇒ W. case: (@separation_K4side (add_edge s1 s2) V1 V2) ⇒ //.
- apply: add_edge_separation psep.1 _ _; by rewrite -SV12 S12 !inE eqxx.
- rewrite -SV12 S12. apply: clique2. by rewrite /edge_rel/= !eqxx s1Ns2.
- by rewrite -SV12 S12 cards2 s1Ns2.
- move ⇒ phi map_phi [subV1|subV2]; first by apply: (W V1 V2) ⇒ //; ∃ phi.
apply: (W V2 V1) ⇒ //; rewrite 1?proper_separation_symmetry 1?setIC //.
by ∃ phi. }
apply: K4free.
apply: add_edge_rmap_separation_minor psep _ _ _ _ rmapphi HphiV1 ⇒ //.
all: by rewrite -SV12.
Qed.
separation V1 V2 → clique (V1 :&: V2) → #|V1 :&: V2| ≤ 2 →
minor G K4 →
exists2 phi : K4 → {set G}, minor_rmap phi &
(∀ x, phi x \subset V1) ∨ (∀ x, phi x \subset V2).
Proof.
move ⇒ sepV clV12 cardV12 /minorRE [phi] [P1 P2 P3 P4].
wlog/forallP cutV1 : V1 V2 sepV clV12 cardV12 / [∀ x, phi x :&: V1 != set0].
{ move ⇒ W.
case: (boolP [∀ x, phi x :&: V1 != set0]) ⇒ A; first exact: (W V1 V2).
case: (boolP [∀ x, phi x :&: V2 != set0]) ⇒ B.
{ setoid_rewrite <- or_comm. by apply: W; rewrite 1?setIC // separation_sym. }
case: notF. case/forallPn : A ⇒ i /negPn Hi. case/forallPn : B ⇒ j /negPn Hj.
case: (altP (i =P j)) ⇒ [E|E].
- subst j. case/set0Pn : (P1 i) ⇒ x Hx. case/setUP : (sepV.1 x) ⇒ Hx'.
+ move/eqP/setP/(_ x) : Hi. by rewrite !inE Hx Hx'.
+ move/eqP/setP/(_ x) : Hj. by rewrite !inE Hx Hx'.
- move/neighborP : (P4 i j E) ⇒ [x] [y] [A B]. rewrite sgP sepV //.
apply: contraTN Hj ⇒ Hy. by apply/set0Pn; ∃ y; rewrite inE B.
apply: contraTN Hi ⇒ Hx. by apply/set0Pn; ∃ x; rewrite inE A. }
set S := V1 :&: V2 in clV12 cardV12.
have phiP i y : y \in phi i → y \notin V1 → phi i :&: S != set0.
{ case/set0Pn : (cutV1 i) ⇒ x /setIP [xpi xV1 ypi yV1].
case: (boolP (x \in V2)) ⇒ xV2; first by apply/set0Pn; ∃ x; rewrite !inE.
case/connect_irredRP : (P2 i x y xpi ypi); first by apply: contraNneq yV1 ⇒ <-.
move ⇒ p Ip subP.
have [_ _ /(_ p)] := separation_separates sepV xV2 yV1.
case ⇒ z /(subsetP subP) ⇒ ? ?. apply/set0Pn; ∃ z. by rewrite /S inD. }
pose phi' (i : K4) := phi i :&: V1.
∃ phi'; first split.
- move ⇒ i. exact:cutV1.
- move ⇒ i. apply connectedI_clique with S ⇒ //.
+ move ⇒ x y p sub_phi Hx Hy. case: (boolP (x \in V2)) ⇒ Hx'.
× ∃ x ⇒ //. by rewrite /S inD.
× have [_ _ /(_ p) [z ? ?]] := (separation_separates sepV Hx' Hy).
∃ z ⇒ //. by rewrite /S inD.
- move ⇒ i j /P3 ⇒ D. apply: disjointW D; exact: subsetIl.
- move ⇒ i j ij. move/P4/neighborP : (ij) ⇒ [x] [y] [H1 H2 H3].
have S_link u v : u \in S → v \in S → u \in phi i → v \in phi j → u -- v.
{ have D: [disjoint phi i & phi j] by apply: P3; rewrite sg_edgeNeq.
move ⇒ H ×. apply: clV12 ⇒ //. by apply: contraTneq H ⇒ ?; set_tac. }
have/subsetP subV : S \subset V1 by exact: subsetIl.
have inS u v : u -- v → u \in V1 → v \notin V1 → u \in S.
{ move ⇒ uv HVu HVv. apply: contraTT uv ⇒ /= C. subst S.
by rewrite sepV // notinD. }
apply/neighborP. case: (boolP (x \in V1)) ⇒ HVx; case: (boolP (y \in V1)) ⇒ HVy.
+ ∃ x; ∃ y. by rewrite !inE HVx HVy.
+ case/set0Pn : (phiP _ _ H2 HVy) ⇒ s /setIP [S1 S2].
∃ x; ∃ s. rewrite !inE H1 HVx S1 S_link // ?subV //. exact: inS HVy.
+ case/set0Pn : (phiP _ _ H1 HVx) ⇒ s /setIP [S1 S2].
∃ s; ∃ y. rewrite !inE H2 HVy S1 S_link // ?subV //.
apply: inS HVx ⇒ //. by rewrite sgP.
+ case/set0Pn : (phiP _ _ H1 HVx) ⇒ s /setIP [S1 S2].
case/set0Pn : (phiP _ _ H2 HVy) ⇒ s' /setIP [S3 S4].
∃ s; ∃ s'. by rewrite !inE S1 S3 S_link // !subV.
- left ⇒ x. exact: subsetIr.
Qed.
Lemma K4_of_paths (G : sgraph) x y s0 s1' (p0 p1 p2 : Path x y) (q1 : Path s0 s1') :
x!=y → independent p0 p1 → independent p0 p2 → independent p1 p2 →
s0 \in interior p0 → s1' \in interior p1 →
irred p0 → irred p1 → irred p2 → irred q1 →
[disjoint q1 & [set x; y]] →
(∀ z' : G, z' \in [predU interior p1 & interior p2] → z' \in q1 → z' = s1') →
minor G K4.
Proof.
move ⇒ xDy ind01 ind02 ind12 sp0 in_p1 Ip0 Ip1 Ip2 Iq av_xy s1'firstp12.
pose phi (i : K4) := match i with
| Ordinal 0 _ ⇒ [set x]
| Ordinal 1 _ ⇒ interior p0 :|: interior q1
| Ordinal 2 _ ⇒ interior p1
| Ordinal 3 _ ⇒ y |: interior p2
| Ordinal p n ⇒ set0
end.
suff: minor_rmap phi by apply minor_of_rmap.
split.
- move ⇒ [m i]. case m as [|[|[|[|m]]]] ⇒ //=; apply /set0Pn.
+ ∃ x. by set_tac.
+ ∃ (s0). by rewrite inE sp0.
+ by ∃ s1'.
+ ∃ y. by set_tac.
- move ⇒ [m i]. case m as [|[|[|[|m]]]] ⇒ //=.
+ exact: connected1.
+ case: (altP (interior q1 =P set0)) ⇒ [->|H].
× rewrite setU0. exact: connected_interior.
× apply: neighbor_connected; try exact: connected_interior.
exact: path_neighborL.
+ exact: connected_interior.
+ exact: connected_interiorR.
- move ⇒ i j iNj. wlog iltj: i j {iNj} / i < j.
{ move ⇒ H. rewrite /= neq_ltn in iNj.
move: iNj ⇒ /orP [iltj|jlti]; [|rewrite disjoint_sym]; exact: H. }
destruct i as [m i]. destruct j as [n j].
case m as [|[|[|[|m]]]] ⇒ //=; case n as [|[|[|[|m']]]] ⇒ //=.
+ rewrite disjoints1. rewrite inE negb_or /interior notinD /=.
have: (x \in [set x; y]); by set_tac.
+ rewrite disjoints1. by rewrite /interior; set_tac.
+ rewrite disjoints1. by rewrite /interior; set_tac.
+ apply: disjointsU ⇒ //. apply/disjointP ⇒ z Z1 Z2.
suff: z = s1' by move: Z1 Z2; rewrite /interior; set_tac.
apply: s1'firstp12. by rewrite inE /= Z2. exact: interiorW.
+ apply: disjointsU ⇒ //.
× rewrite disjoint_sym. apply: disjointsU.
-- rewrite /interior. apply/disjointP; by set_tac.
-- by rewrite disjoint_sym.
× rewrite disjoint_sym. apply: disjointsU.
-- apply/disjointP. rewrite /interior. have: (y \in [set x; y]); by set_tac.
-- apply/disjointP ⇒ z Z1 Z2.
suff: z = s1' by move: Z1 Z2; rewrite /interior; set_tac.
apply: s1'firstp12. by rewrite inE /= Z1. exact: interiorW.
+ rewrite disjoint_sym. apply: disjointsU.
× rewrite disjoints1 /interior. by set_tac.
× by rewrite disjoint_sym.
- move ⇒ i j iNj. wlog iltj: i j {iNj} / i < j.
{ move ⇒ H. rewrite /edge_rel /= neq_ltn in iNj.
move: iNj ⇒ /orP [iltj|jlti]; [|rewrite neighborC]; exact: H. }
destruct i as [m i]. destruct j as [n j].
have [[? ?] ?] := (valP (p0),valP p1, valP p2).
case m as [|[|[|[|m]]]] ⇒ //=; case n as [|[|[|[|m']]]] ⇒ //=.
+ apply: neighborUl. apply: path_neighborL ⇒ //; by set_tac.
+ apply: path_neighborL ⇒ //; by set_tac.
+ exact: neighbor_interiorL.
+ case: (altP (interior q1 =P set0)) ⇒ [E|H].
× rewrite E setU0. apply/neighborP; ∃ (s0); ∃ s1'. split ⇒ //.
case/interior0E : E ⇒ //. apply: contraTneq ind01.
rewrite /independent; set_tac.
× rewrite neighborC. apply: neighborUr. exact: path_neighborR.
+ apply: neighborUl. rewrite neighborC. apply: neighborUl.
apply: path_neighborR ⇒ //; by set_tac.
+ apply: neighborUl. rewrite neighborC. apply: path_neighborR ⇒ //; by set_tac.
Qed.
Lemma K4_of_vseparators (G : sgraph) :
3 < #|G| → (∀ S : {set G}, vseparator S → 2 < #|S|) → minor G K4.
Proof.
move ⇒ G4elt minsep3.
case: (boolP (cliqueb [set: G])) ⇒ [|/cliquePn [x] [y] [_ _ xNy xNEy]].
{ move/cliqueP. apply: minor_of_clique. by rewrite cardsT. }
have minsep_xy S : separates x y S → 3 ≤ #|S|.
{ move ⇒ A. apply: minsep3. by ∃ x; ∃ y. }
case: (theta xNEy xNy minsep_xy) ⇒ p ind_p.
case: (theta_vertices p xNy xNEy) ⇒ s Hs.
pose p1 := p ord1. pose p2 := p ord2.
pose s1 := s ord1. pose s2 := s ord2.
have ind12 : independent p1 p2 by apply: ind_p.
have ind01 : independent (p ord0) p1 by apply: ind_p.
have ind02 : independent (p ord0) p2 by apply: ind_p.
have sp1 : s1 \in interior p1 by rewrite Hs.
have sp2 : s2 \in interior p2 by rewrite Hs.
case (@avoid_nonseperator G [set x; y] (s ord0) (s1)) ⇒ //; try (apply: interiorN; eauto).
{ move/minsep3. by rewrite cards2 xNy. }
move ⇒ q Iq av_xy.
case: (@split_at_first G [predU interior p1 & interior p2] (s ord0) s1 q s1) ⇒ //.
{ by rewrite inE /= sp1. }
move ⇒ s1' [q1 [q2 [catp s1'p12 s1'firstp12]]].
subst q. case/irred_catE : Iq ⇒ Iq _ _.
have {av_xy} av_xy : [disjoint q1 & [set x; y]] by apply/disjointP ⇒ z; set_tac.
wlog in_p1: p1 p2 s1 s2 ind01 ind02 ind12 sp1 {sp2} {q2 s1'p12} s1'firstp12 / s1' \in interior p1.
{ move ⇒ W. case/orP: (s1'p12) ⇒ /= [s1'p1|s1'p2].
- by apply W with p1 p2 s1.
- apply W with p2 p1 s2 ⇒ //. by apply: independent_sym.
move ⇒ z' H1 H2. apply s1'firstp12 ⇒ //. move: H1. by rewrite !inE orbC. }
apply K4_of_paths with x y (s ord0) s1' (p ord0) p1 p2 q1 ⇒ //; exact: valP.
Qed.
Lemma no_K4_smallest_vseparator (G : sgraph) :
¬ minor G K4 → #|G| ≤ 3 ∨ (∃ S : {set G}, smallest vseparator S ∧ #|S| ≤ 2).
Proof.
move ⇒ HM. case (boolP (3 < #|G|)) ⇒ sizeG; last by rewrite leqNgt; left.
right. case: (boolP ([∃ (S : {set G} | #|S| ≤ 2), vseparatorb S])).
- case/exists_inP ⇒ /= S sizeS sepS.
case: (arg_minP (fun a : {set G} ⇒ #|a|) sepS) ⇒ U /vseparatorP sepU HU.
∃ U. repeat split ⇒ //.
+ move ⇒ V /vseparatorP. exact: HU.
+ move: (HU S sepS) ⇒ ?. exact: leq_trans sizeS.
- move/exists_inPn ⇒ H. exfalso. apply HM. apply K4_of_vseparators ⇒ //.
move ⇒ S. move: (H S). rewrite unfold_in (rwP (vseparatorP _)) ⇒ H'.
apply: contraTT. by rewrite ltnNge negbK.
Qed.
Lemma add_edge_separation (G : sgraph) V1 V2 s1 s2:
@separation G V1 V2 → s1 \in V1:&:V2 → s2 \in V1:&:V2 →
@separation (add_edge s1 s2) V1 V2.
Proof.
move ⇒ sep s1S s2S. split; first by move ⇒ x; apply sep.
move ⇒ x1 x2 x1V2 x2V1 /=. rewrite /edge_rel/= sep //=.
apply: contraTF isT. case/orP ⇒ [] /and3P[_ /eqP ? /eqP ?]; by set_tac.
Qed.
Theorem TW2_of_K4F (G : sgraph) :
K4_free G → ∃ (T : forest) (B : T → {set G}), sdecomp T G B ∧ width B ≤ 3.
Proof.
elim/card_ind : G ⇒ G Hind K4free.
case (no_K4_smallest_vseparator K4free) =>[|[S [ssepS Ssmall2]]].
{ exact: decomp_small. }
move: (vseparator_separation ssepS.1) ⇒ [V1 [V2 [[sep prop] SV12]]].
move: (prop) ⇒ [x0 [y0 [Hx0 Hy0]]].
case: (ltngtP #|S| 2) Ssmall2 ⇒ // [Sless2|/eqP Ssize2] _.
- have V1properG: #|induced V1| < #|G|.
{ rewrite card_sig. eapply card_ltnT. simpl. eauto. }
have {x0 Hx0 y0 Hy0} V2properG: #|induced V2| < #|G|.
{ rewrite card_sig. eapply card_ltnT. simpl. eauto. }
case: (Hind (induced V1)) ⇒ // [|T1 [B1 [sd1 w1]]].
apply: subgraph_K4_free K4free; exact: induced_sub.
case: (Hind (induced V2)) ⇒ // [|T2 [B2 [sd2 w2]]].
apply: subgraph_K4_free K4free; exact: induced_sub.
have [|T[B [sdB wB]]] := separation_decomp sd1 sd2 sep _.
by rewrite -SV12; exact: small_clique.
by ∃ T,B; split ⇒ //; apply: leq_trans wB _; rewrite geq_max w1 w2.
- case/cards2P : Ssize2 ⇒ s1 [s2] [s1Ns2 S12]; pose G' := add_edge s1 s2.
suff [T[B [dcB wB]]] :
∃ (T : forest) (B : T → {set G'}), sdecomp T G' B ∧ width B ≤ 3.
{ ∃ T,B; split ⇒ //; move: dcB.
destruct G; apply sdecomp_subrel. exact: subrelUl. }
have V1properG: #|@induced G' V1| < #|G|.
{ rewrite card_sig. eapply card_ltnT. simpl. eauto. }
have {x0 Hx0 y0 Hy0} V2properG: #|@induced G' V2| < #|G|.
{ rewrite card_sig. eapply card_ltnT. simpl. eauto. }
case: (Hind (@induced G' V1)) ⇒ // [|T1 [B1 [sd1 w1]]].
{ apply: (@add_edge_separation_excluded G s1 s2 V1 V2) ⇒ //.
by rewrite -SV12 S12. by rewrite -SV12. }
case: (Hind (@induced G' V2)) ⇒ // [|T2 [B2 [sd2 w2]]].
{ apply: (@add_edge_separation_excluded G s1 s2 V2 V1) ⇒ //.
- rewrite proper_separation_symmetry //.
- by rewrite setIC -SV12 S12.
- by rewrite setIC -SV12. }
have [||T [B [sdB wB]]] := @separation_decomp G' _ _ _ _ _ _ sd1 sd2 _ _.
by apply: add_edge_separation ⇒ //; rewrite -SV12 S12 !inE eqxx.
by rewrite -SV12 S12; apply: clique2; rewrite /edge_rel/= !eqxx s1Ns2.
by ∃ T,B; split ⇒ //; apply: leq_trans wB _; rewrite geq_max w1 w2.
Qed.
Theorem excluded_minor_TW2 (G : sgraph) :
K4_free G ↔
∃ (T : forest) (B : T → {set G}), sdecomp T G B ∧ width B ≤ 3.
Proof. split ⇒ [|[T][B][]]. exact: TW2_of_K4F. exact: TW2_K4_free. Qed.
Lemma K4_free_add_edge_sep_size2 (G : sgraph) (s1 s2 : G):
K4_free G → smallest vseparator [set s1; s2] → s1 != s2 → K4_free (add_edge s1 s2).
Proof.
move S12 : [set s1;s2] ⇒ S. move/esym in S12. move ⇒ K4free ssepS s1Ns2 K4G'.
case: (vseparator_separation ssepS.1) ⇒ V1 [V2] [psep SV12].
wlog [phi rmapphi HphiV1] : {K4G'} V1 V2 psep SV12 / exists2 phi : K4 → {set add_edge s1 s2},
minor_rmap phi & ∀ x : K4, phi x \subset V1.
{ move ⇒ W. case: (@separation_K4side (add_edge s1 s2) V1 V2) ⇒ //.
- apply: add_edge_separation psep.1 _ _; by rewrite -SV12 S12 !inE eqxx.
- rewrite -SV12 S12. apply: clique2. by rewrite /edge_rel/= !eqxx s1Ns2.
- by rewrite -SV12 S12 cards2 s1Ns2.
- move ⇒ phi map_phi [subV1|subV2]; first by apply: (W V1 V2) ⇒ //; ∃ phi.
apply: (W V2 V1) ⇒ //; rewrite 1?proper_separation_symmetry 1?setIC //.
by ∃ phi. }
apply: K4free.
apply: add_edge_rmap_separation_minor psep _ _ _ _ rmapphi HphiV1 ⇒ //.
all: by rewrite -SV12.
Qed.