Library RelationAlgebra.fhrel

Require Import Setoid Morphisms.
Require Import kat normalisation rewriting kat_tac comparisons rel relalg boolean.

From mathcomp Require Import all_ssreflect.

Set Implicit Arguments.
Unset Printing Implicit Defensive.
Unset Strict Implicit.
Set Bullet Behavior "Strict Subproofs".

fhrel: The model of finite heterogeneous relations

Tactic for eliminating boolean logical connectives. Usually followed by firstoder. This needs explicit calls to setoid_rewrite do work under binders

#[export] Instance: Proper (iff ==> iff ==> iff ==> iff) and3. firstorder. Qed.
#[export] Instance: Proper (iff ==> iff ==> iff ==> iff ==> iff) and4. firstorder. Qed.
#[export] Instance: Proper (iff ==> iff ==> iff ==> iff ==> iff ==> iff) and5. firstorder. Qed.
#[export] Instance: Proper (iff ==> iff ==> iff ==> iff) or3. firstorder. Qed.
#[export] Instance: Proper (iff ==> iff ==> iff ==> iff ==> iff) or4. firstorder. Qed.

Ltac to_prop :=
  repeat first
         [ setoid_rewrite <- (rwP andP)
         | setoid_rewrite <- (rwP orP)
         | setoid_rewrite <- (rwP and3P)
         | setoid_rewrite <- (rwP existsP)
         | setoid_rewrite <- (rwP forallP)
         | setoid_rewrite <- (rwP eqP)
         |
           setoid_rewrite <- (rwP implyP)].

Use phantom types to trigger inference of finType structures
Section FHRelType.
  Variables A B : finType.
  Definition fhrel_type := A B bool.
  Definition fhrel_of of phant A & phant B := fhrel_type.
End FHRelType.

Notation "{ 'fhrel' A & B }" := (fhrel_of (Phant A) (Phant B))
  (at level 0, format "{ 'fhrel' A & B }") : type_scope.

Heterogeneous binary relations hrel X Y (i.e., X Y Prop) are already declared as a model of relation algebra in the module rel. Thus, we only need to provide the model for finite and decidable relations between finite types {fhrel A & B}

Section FHRel.
Implicit Types A B C : finType.

Lattice Operations

The relations e1 e2 and e1 e2 and the lattice operations are not declared but derived (up to conversion) via the powerset construction on the lattice of booleans
Section LatticeOps.
Variables (A B : finType) (e1 e2 : {fhrel A & B}).
Implicit Types (x : A) (y : B).

Definition fhrel_weq := e1 =2 e2.
Definition fhrel_leq := forall x y, e1 x y -> e2 x y.
Definition fhrel_cup := fun x y => e1 x y || e2 x y.
Definition fhrel_cap := fun x y => e1 x y && e2 x y.
Definition fhrel_neg := fun x y => ~~ (e1 x y).
Definition fhrel_top := fun x y => true.
Definition fhrel_bot := fun x y => false.
End LatticeOps.

Canonical Structure fhrel_lattice_ops A B :=
  lattice.mk_ops {fhrel A & B} lattice.leq weq cup cap neg bot top.

Arguments lattice.leq : simpl never.
Arguments lattice.weq : simpl never.

Obtain the lattice laws using the standard powerset construction
#[export] Instance fhrel_lattice_laws A B:
  lattice.laws (BL+STR+CNV+DIV) (fhrel_lattice_ops A B) := pw_laws _.

Lemma fhrel_leq_dec A B (e1 e2 : {fhrel A & B}) : decidable (e1 e2).
Proof.
  apply: (@decP _ [ x, y, e1 x y ==> e2 x y]).
  apply: (equivP idP); to_prop; reflexivity.
Qed.

Lemma fhrel_weq_dec A B (e1 e2 : {fhrel A & B}) : decidable (e1 e2).
Proof.
  apply: (@decP _ [ x, y, e1 x y == e2 x y]).
  apply: (equivP idP); to_prop; reflexivity.
Qed.

Enable rewriting of lattice.leq and weq using Ssreflect's rewrite tactic
#[export] Instance leq_rewrite_relation ops : RewriteRelation (@lattice.leq ops).
Qed.
#[export] Instance weq_rewrite_relation ops : RewriteRelation (@weq ops).
Qed.

Monoid Operations

We implement the monoid operations using Ssreflect's boolean quantifiers and the transitive closure operation provided by the path library

Section MonoidOps.
Variables (A B C : finType).

Definition fhrel_dot (e1 : {fhrel A & B}) (e2 : {fhrel B & C}) : {fhrel A & C} :=
  fun x y[ z, e1 x z && e2 z y].
Definition fhrel_cnv (e : {fhrel A & B}) : {fhrel B & A} :=
  fun x ye y x.
Definition fhrel_str (e : {fhrel A & A}) : {fhrel A & A} :=
  connect e.
Definition fhrel_one : {fhrel A & A} :=
  @eq_op A.
Definition fhrel_rdv (e1 : {fhrel B & A}) (e2 : {fhrel C & A}) : {fhrel C & B} :=
  fun j i[ k, e1 i k ==> e2 j k].
Definition fhrel_ldv (e1 : {fhrel A & B}) (e2 : {fhrel A & C}) : {fhrel B & C} :=
  fun i j[ k, e1 k i ==> e2 k j].
Definition fhrel_inj (p : pred A) :=
  fun x y(x == y) && p x.
End MonoidOps.

Definition fhrel_itr A (e : {fhrel A & A}) : {fhrel A & A} :=
  fhrel_dot e (connect e).

Canonical fhrel_monoid_ops :=
  monoid.mk_ops finType fhrel_lattice_ops
                fhrel_dot
                fhrel_one
                fhrel_itr
                fhrel_str
                fhrel_cnv
                fhrel_ldv
                fhrel_rdv.

Ensure that the fhrel_× definitions simplify, given enough arguments.
Arguments fhrel_dot {_ _ _} _ _ /.
Arguments fhrel_cnv {_ _} _ _ /.
Arguments fhrel_one {_} _ _ /.
Arguments fhrel_str {_} _ _ /.
Arguments fhrel_ldv {_} _ _ /.
Arguments fhrel_rdv {_} _ _ /.
Arguments fhrel_inj {_} _ _ _ /.

Lemma connect_iter (A : ob fhrel_monoid_ops) (e : fhrel_monoid_ops A A) (x y : A):
    connect e x y ( u : nat, rel.iter A e u x y).
Proof.
  split.
  - case/connectPp pth_p lst_p. (size p).
    elim: p x pth_p lst_p ⇒ /= [x _ → // | z p IHp x /andP [xz pth_p] lst_p].
     z ⇒ //. exact: IHp.
  - casen. elim: n x ⇒ /= [x <- // |n IHn x [z xz H]].
    exact: connect_trans (connect1 xz) (IHn _ _).
Qed.

We obtain the monoid laws using a faithful functor to the hrel model
Definition hrel_of (A B : finType) (e : {fhrel A & B}) : hrel A B := fun x ye x y.
Ltac hrel_prop := do ! move ⇒ ?; rewrite /hrel_of /=; to_prop; by firstorder.

Lemma hrel_of_morphism (A B : finType) : morphism (BDL+STR+CNV+DIV) (@hrel_of A B).
Proof.
  split; try done; try hrel_prop.
  movee1 e2 H x y. apply/eq_bool_iff. exact: H.
Qed.

Lemma hrel_of_functor : functor (BDL+STR+CNV+DIV) hrel_of.
Proof.
  apply (@Build_functor (BDL+STR+CNV+DIV) fhrel_monoid_ops hrel_monoid_ops id hrel_of).
  all: try done. all: try hrel_prop.
  - apply: hrel_of_morphism.
  - move_ A e x y. rewrite /hrel_of/= /fhrel_itr /hrel_itr /=. to_prop.
    setoid_rewrite connect_iter. by firstorder.
  - move_ A e x y. exact: connect_iter.
Qed.

Lemma fhrel_monoid_laws_BDL: monoid.laws (BDL+STR+CNV+DIV) fhrel_monoid_ops.
Proof.
  eapply (laws_of_faithful_functor hrel_of_functor) ⇒ //.
  moveA B e1 e2 H x y. apply/eq_bool_iff. exact: H.
Qed.

#[export] Instance hrel_monoid_laws: monoid.laws (BL+STR+CNV+DIV) fhrel_monoid_ops.
Proof.
  case fhrel_monoid_laws_BDL ⇒ ×.
  split; try assumption. exact: fhrel_lattice_laws.
Qed.

In ssreflect /= is used pervasively, so we block the simplification of relation operators. Unfold selectively by using rewrite /dot/=
Arguments dot : simpl never.
Arguments cnv : simpl never.
Arguments str : simpl never.
Arguments itr : simpl never.
Arguments lattice.leq : simpl never.
Arguments lattice.weq : simpl never.
Arguments monoid.one : simpl never.
Hint Unfold monoid.one : core.

Lemmas to eliminate 1 n m
Lemma hrel_oneE (n : Set) a b : (1 : hrel n n) a b a = b.
Proof. reflexivity. Qed.
Lemma fhrel_oneE A a b : (1 : {fhrel A & A}) a b = (a == b).
Proof. reflexivity. Qed.
Definition oneE := (hrel_oneE,fhrel_oneE).

The following is required since top' x y tries to infer an hrel instance and then fails with a universe inconsistency as finite types to not necessarily live in Set
Definition ftop_def (A B : finType) of phant A & phant B :=
  (@top (@mor fhrel_monoid_ops A B)).
Notation ftop A B := (ftop_def (Phant A) (Phant B)).

Definition fzero_def (A B : finType) of phant A & phant B :=
  (@bot (@mor fhrel_monoid_ops A B)).
Notation fzero A B := (fzero_def (Phant A) (Phant B)).

Definition fone_def (A : finType) of phant A :=
  (@one fhrel_monoid_ops A).
Notation fone A := (fone_def (Phant A)).

Arguments ftop_def A B /.
Arguments fzero_def A B /.
Arguments fone_def A /.

KAT Operations

"decidable" sets or predicates: Boolean functions
Definition fdset: ob fhrel_monoid_ops lattice.ops := pw_ops bool_lattice_ops.

Canonical Structure fhrel_kat_ops :=
  kat.mk_ops fhrel_monoid_ops fdset (@fhrel_inj).

Global Instance fhrel_kat_laws: kat.laws fhrel_kat_ops.
Proof.
  split.
  - by eapply lower_laws.
  - moveA. by eapply lower_lattice_laws.
  - moveA.
    have H : Proper (lattice.leq ==> lattice.leq) (@fhrel_inj A).
    { movee1 e2 H x y /=. by case: (_ == _) ⇒ //=. }
    split ⇒ //=.
    + movex y. rewrite !weq_spec. by intuition.
    + move_ f g x y /=. by case: (_ == _); case (f x); case (g x).
    + move_ x y /=. by rewrite andbF.
  - moveA x y /=. by rewrite andbT.
  - moveA p q x y /=. rewrite /dot/=.
    apply/eq_bool_iff. to_prop. by firstorder;subst.
Qed.

Cardinality

For finite relations we obtain cardinality operation by coercing heterogeneous relations to prediactes on pairs

Definition fhrel_pred (aT rT: finType) (e : {fhrel aT & rT}) :=
  [pred x : aT × rT | e x.1 x.2].

Canonical fhrelPredType (aT rT: finType) :=
  @PredType (aT × rT) ({fhrel aT & rT}) (@fhrel_pred _ _).
Coercion fhrel_pred : fhrel_of >-> simpl_pred.


Section CardinalityBase.
Variables (aT rT : finType).
Implicit Types (e : {fhrel aT & rT}).

Lemma leq_card e e': e e' #|e| #|e'|.
Proof. moveA. apply: subset_leq_card. apply/subsetPx. exact: A. Qed.

Lemma weq_card e e' : e e' #|e| = #|e'|.
Proof. rewrite weq_spec (rwP eqP) eqn_leq ⇒ [[A B]]. by rewrite !leq_card. Qed.

Lemma fhrel_card0 : #|fzero aT rT| = 0%N.
Proof. exact: card0. Qed.

Lemma fhrel_cardT : #|ftop aT rT| = #|aT| × #|rT|.
Proof. exact: eq_card_prod. Qed.

Lemma fhrel_card1 : #|fone aT| = #|aT|.
Proof.
  rewrite -(on_card_preimset (f := (fun x(x,x)))).
  - rewrite eq_cardT ?cardT //= ⇒ x. by rewrite !inE oneE eqxx.
  - fst ⇒ //= [[x y]]. by rewrite inE oneE /= ⇒ /eqP→.
Qed.

Lemma card_cnv e : #|e°| = #|e|.
Proof.
  rewrite -(on_card_preimset (f := (fun x(x.2,x.1)))).
  - apply: eq_card ⇒ [[x y]]. by rewrite !inE.
  - apply: onW_bij. apply: (Bijective (g := fun x(x.2,x.1))); by case.
Qed.

Lemma card_cup e1 e2 : #|e1 + e2| = #|e1| + #|e2| - #|e1 e2|.
Proof. by rewrite (rwP eqP) -cardUI -addnBA // subnn addn0. Qed.

Lemma card_capL e1 e2 : #|e1 e2| #|e1|.
Proof. apply: leq_card. by lattice. Qed.

Lemma card_capR e1 e2 : #|e1 e2| #|e2|.
Proof. apply: leq_card. by lattice. Qed.

Definition dom e := [pred x | [ y, e x y]].
Definition ran e := [pred y | [ x, e x y]].

Lemma card_dom e : #|dom e| = #|e ftop rT unit|.
Proof.
  rewrite -[in RHS](on_card_preimset (f := (fun x : aT(x,tt)))).
  - apply: eq_cardx. rewrite !inE /dot /=.
    by apply/eq_bool_iff;to_prop; firstorder.
  - apply: onW_bij. by apply: (Bijective (g := fst)) ⇒ [|[? []]].
Qed.

End CardinalityBase.

Lemma ran_dom {A B} {e : {fhrel A & B}} : ran e =i dom e°.
Proof. movex. by rewrite !inE. Qed.

Lemma card_ran A B (e : {fhrel A & B}) :
  #|ran e| = #|ftop unit _e|.
Proof.
  rewrite (eq_card ran_dom) card_dom -card_cnv.
  apply: weq_card. rewrite /ftop_def.
  by rewrite cnvdot cnvtop cnv_invol.
Qed.

Lemma fhrel_surjective A B (e : {fhrel A & B}) : is_surjective e y, x, e x y.
Proof.
  split ⇒ [H y|H y ?].
  - case/exists_inP : (H y y (eqxx _)) ⇒ x. by x.
  - move/eqP<-. apply/exists_inP. case: (H y) ⇒ x exy. by x.
Qed.

Lemma surjective_card A B (e : {fhrel A & B}) :
  is_surjective e #|B| #|e|.
Proof.
  move/fhrel_surjectiveE.
  pose f y := (xchoose (E y),y).
  have inj_f : injective f by movex y [].
  rewrite -(card_codom inj_f).
  apply: subset_leq_card. apply/subsetP ⇒ [[x y]] /codomP ⇒ [[y'] [-> <-]].
  rewrite inE /=. exact: (xchooseP (E y)).
Qed.

Lemma fhrel_injective A B (e : {fhrel A & B}) :
  is_injective e x x' y, e x y e x' y x = x'.
Proof.
  rewrite /is_injective; split ⇒ [H x x' y E1 E2|H x x' E].
  - apply/eqP. apply: (H x x'). by apply/exists_inP; y.
  - apply/eqP. case/exists_inP : E. exact: H.
Qed.

Lemma injective_card A B (e : {fhrel A & B}) :
  is_injective e #|e| #|B|.
Proof.
  move/fhrel_injectiveinj_e.
  rewrite -(card_in_imset (f := @snd A B)) ?max_card //.
  move ⇒ [x y] [x' y']. rewrite !inE /= ⇒ E1 E2 ?; subst.
  by rewrite (inj_e _ _ _ E1 E2).
Qed.

Lemma fhrel_univalent A B (e : {fhrel A & B}) :
  is_univalent e x y y', e x y e x y' y = y'.
Proof.
  split ⇒ [/@injective_cnv/fhrel_injective|H].
  - rewrite /cnv/= ⇒ H ? ? ?; exact: H.
  - rewrite /is_univalent. cnv_switch. rewrite cnv1 cnvdot.
    rewrite -/(is_injective _) fhrel_injective ⇒ ? ? ?. exact: H.
Qed.

Lemma univalent_card A B (e : {fhrel A & B}) :
  is_univalent e #|e| #|A|.
Proof. move ⇒ ?. rewrite -card_cnv. exact: injective_card. Qed.

Lemma total_card A B (e : {fhrel A & B}) :
  is_total e #|A| #|e|.
Proof. move ⇒ ?. rewrite -card_cnv. exact: surjective_card. Qed.

End FHRel.

Notation ftop A B := (ftop_def (Phant A) (Phant B)).
Notation fzero A B := (fzero_def (Phant A) (Phant B)).
Notation fone A := (fone_def (Phant A)).

Ltac fold_fhrel := ra_fold fhrel_monoid_ops.
Tactic Notation "fold_fhrel" "in" hyp_list(H) := ra_fold fhrel_monoid_ops in H.
Tactic Notation "fold_fhrel" "in" "*" := ra_fold fhrel_monoid_ops in ×.

Note that, subrel e f (which is convertible to e f if e and f are homogeneous relations over some finite type) and e =2 f (which is convertible to e f even in the heterogeneous case) are used pervasively in MathComp. Consequently, fold_fhrel can be used to convert their statements into relation algebra statements. See below for an examle:
This is connect_sub
Goal (T : finType) (e e' : rel T), subrel e (connect e') subrel (connect e) (connect e').
moveT e e'. fold_fhrel. moveH. rewrite H. ka. Abort.

This is connect_eq
Goal (T : finType) (e e' : rel T), e =2 e' connect e =2 connect e'.
moveT e e'. fold_fhrel. moveH. by rewrite H. Abort.