Library RelationAlgebra.factors
Require Import kleene.
Set Implicit Arguments.
Lemma ldv_dotx `{laws} `{DIV ≪ l} n m p q (x: X n m) (y: X m p) (z: X n q): x⋅y -o z ≡ y -o x -o z.
Proof.
apply from_below. intro t.
now rewrite 3ldv_spec, dotA.
Qed.
Lemma ldv_xdot `{laws} `{DIV ≪ l} n m p (x: X n m) (y: X m p): y ≦ x -o (x⋅y).
Proof. now rewrite ldv_spec. Qed.
Lemma ldv_1x `{laws} `{DIV ≪ l} n m (x: X n m): 1 -o x ≡ x.
Proof. apply from_below. intro y. now rewrite ldv_spec, dot1x. Qed.
Lemma ldv_0x `{laws} `{DIV+BOT+TOP ≪ l} n m p (x: X n m): 0 -o x ≡ top' p m.
Proof. apply from_below. intro y. rewrite ldv_spec, dot0x. split; intros _; lattice. Qed.
Lemma ldv_xt `{laws} `{DIV+TOP ≪ l} n m p (x: X n m): x -o top ≡ top' m p.
Proof. apply from_below. intro y. rewrite ldv_spec. split; intros _; lattice. Qed.
Lemma str_ldv `{laws} `{STR+DIV ≪ l} n m (x: X n m): (x -o x)^* ≡ x -o x.
Proof. apply antisym. apply str_ldv_. apply str_ext. Qed.
Lemma ldv_rdv `{laws} `{DIV ≪ l} n m p q (x: X n m) y (z: X p q): x -o (y o- z) ≡ (x -o y) o- z.
Proof. apply from_below. intro. now rewrite ldv_spec, 2rdv_spec, ldv_spec, dotA. Qed.
Lemma ldv_unfold `{laws} `{BL+DIV+CNV ≪ l} n m p (x: X n m) (y: X n p): x -o y ≡ !(x° ⋅ !y).
Proof. apply from_below. intro. now rewrite ldv_spec, neg_leq_iff', <-Schroeder_l. Qed.
dual properties for right factors
Lemma rdv_cancel `{laws} `{DIV ≪ l} n m p (x: X m n) (y: X p n): (y o- x)⋅x ≦ y.
Proof. dual @ldv_cancel. Qed.
Lemma rdv_dotx `{laws} `{DIV ≪ l} n m p q (x: X m n) (y: X p m) (z: X q n): z o- y⋅x ≡ z o- x o- y.
Proof. dual @ldv_dotx. Qed.
Lemma rdv_xdot `{laws} `{DIV ≪ l} n m p (x: X m n) (y: X p m): y ≦ y⋅x o- x.
Proof. dual @ldv_xdot. Qed.
Lemma leq_rdv `{laws} `{DIV ≪ l} n m (x y: X m n): x ≦ y ↔ 1 ≦ y o- x.
Proof. dual @leq_ldv. Qed.
Lemma rdv_xx `{laws} `{DIV ≪ l} n m (x: X m n): 1 ≦ x o- x.
Proof. dual @ldv_xx. Qed.
Lemma rdv_1x `{laws} `{DIV ≪ l} n m (x: X m n): x o- 1 ≡ x.
Proof. dual @ldv_1x. Qed.
Lemma rdv_0x `{laws} `{DIV+BOT+TOP ≪ l} n m p (x: X m n): x o- 0 ≡ top' m p.
Proof. dual @ldv_0x. Qed.
Lemma rdv_xt `{laws} `{DIV+TOP ≪ l} n m p (x: X m n): top o- x ≡ top' p m.
Proof. dual @ldv_xt. Qed.
Lemma rdv_trans `{laws} `{DIV ≪ l} n m p q (x: X m n) (y: X p n) (z: X q n):
(z o- y)⋅(y o- x) ≦ z o- x.
Proof. dual @ldv_trans. Qed.
Lemma str_rdv `{laws} `{STR+DIV ≪ l} n m (x: X m n): (x o- x)^* ≡ x o- x.
Proof. dual @str_ldv. Qed.
Lemma rdv_unfold `{laws} `{BL+DIV+CNV ≪ l} n m p (x: X m n) (y: X p n): y o- x ≡ !(!y⋅x°).
Proof. dual @ldv_unfold. Qed.