Library GraphTheory.cp_minor

From mathcomp Require Import all_ssreflect.

Require Import edone preliminaries digraph sgraph minor checkpoint.
Require Import connectivity excluded set_tac.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

Set Bullet Behavior "Strict Subproofs".

Combined Minor and Checkpoint Properties

This file is where we combine the theory of checkpoints and the theory of minors and prove the lemmas underlying the correctness arguments for the term extraction function.

Section CheckpointsAndMinors.
Variables (G : sgraph).
Hypothesis (conn_G : connected [set: G]).

Collapsing Bags


Lemma collapse_bags (U : {set G}) u0' (inU : u0' \in U) :
  let T := U :|: ~: \bigcup_(x in U) bag U x in
  let G' := sgraph.induced T in
   phi : G G',
    [/\ total_minor_map phi,
     ( u : G', val u \in T :\: U phi @^-1 u = [set val u]) &
     ( u : G', val u \in U phi @^-1 u = bag U (val u))].
Proof.
  moveT G'.
  have inT0 : u0' \in T by rewrite !inE inU.
  pose u0 : G' := Sub u0' inT0.
  pose phi u := if [pick x in U | u \in bag U x] is Some x
                then insubd u0 x else insubd u0 u.
   phi.
  have phiU (u : G') : val u \in U phi @^-1 u = bag U (val u).
  { moveuU. apply/setPz. rewrite !inE /phi.
    case: pickP ⇒ [x /andP [X1 X2]|H].
    - rewrite -val_eqE insubdK ?inE ?X1 //. apply/eqP/idP ⇒ [<-//|].
      apply: contraTeqC.
      suff S: [disjoint bag U x & bag U (val u)] by rewrite (disjointFr S).
      apply: bag_disj ⇒ //; exact: CP_extensive.
    - move: (H (val u)). rewrite uU /= ⇒ →.
      have zU : z \notin U. { move: (H z). by rewrite bag_id andbT ⇒ →. }
      have zT : z \in T.
      { rewrite !inE (negbTE zU) /=. apply/negP ⇒ /bigcupP [x xU xP].
        move: (H x). by rewrite xU xP. }
      rewrite -val_eqE insubdK //. by apply: contraNF zU ⇒ /eqP→. }
  have phiT (u : G') : val u \in T :\: U phi @^-1 u = [set val u].
  { move/setDP ⇒ [uT uU]. apply/setPz. rewrite !inE /phi.
    case: pickP ⇒ [x /andP [xU xP]|H].
    - rewrite -val_eqE insubdK ?inE ?xU // (_ : z == val u = false).
      + by apply: contraNF uU ⇒ /eqP <-.
      + apply: contraTF uT ⇒ /eqP ?. subst.
        rewrite inE (negbTE uU) /= inE negbK. by apply/bigcupP; x.
    - have zU : z \notin U. { move: (H z). by rewrite bag_id andbT ⇒ →. }
      have zT : z \in T.
      { rewrite !inE (negbTE zU) /=. apply/negP ⇒ /bigcupP [x xU xP].
        move: (H x). by rewrite xU xP. }
      by rewrite -val_eqE insubdK. }
  have preim_G' (u : G') : val u \in phi @^-1 u.
  { case: (boolP (val u \in U)) ⇒ H; first by rewrite phiU // bag_id.
    rewrite phiT ?set11 // inE H. exact: valP. }
  split ⇒ //.
  - split.
    + movey. (val y). apply/eqP. case: (boolP (val y \in U)) ⇒ x_inU.
      × by rewrite mem_preim phiU // bag_id.
      × rewrite mem_preim phiT inE // x_inU. exact: valP.
    + movey. case: (boolP (val y \in U)) ⇒ xU.
      × rewrite phiU //. apply: connected_bag ⇒ //. exact: CP_extensive.
      × rewrite phiT; first exact: connected1. rewrite inE xU. exact: valP.
    + movex y xy. (val x); (val y). by rewrite !preim_G'.
Qed.

End CheckpointsAndMinors.
Arguments collapse_bags [G] conn_G U u0' _.

Neighbor Tree Lemma

Definition neighbours (G : sgraph) (x : G) := [set y | x -- y].

Proposition 21(ii)
Definition igraph (G : sgraph) (x y : G) : sgraph := induced (interval x y).
Definition istart (G : sgraph) (x y : G) : igraph x y := Sub x (intervalL x y).
Definition iend (G : sgraph) (x y : G) : igraph x y := Sub y (intervalR x y).

Arguments add_edge : clear implicits.
Arguments igraph : clear implicits.
Arguments istart {G x y}.
Arguments iend {G x y}.

Lemma add_edge_induced_iso (G : sgraph) (S T : {set G})
      (u v : induced S) (x y : induced T) :
  S = T val u = val x val v = val y
  diso (add_edge (induced S) u v) (add_edge (induced T) x y).
Proof.
  moveeq_ST eq_ux eq_vy.
  have SofT z : z \in T z \in S by rewrite eq_ST.
  have TofS z : z \in S z \in T by rewrite eq_ST.
  set g : induced T induced S := fun zSub (val z) (SofT (val z) (valP z)).
  set f : induced S induced T := fun zSub (val z) (TofS (val z) (valP z)).
  apply (@Diso'' (add_edge (induced S) _ _) (add_edge (induced T) _ _) f g); rewrite {}/f {}/g.
  - move ⇒ ?. exact: val_inj.
  - move ⇒ ?. exact: val_inj.
  - movea b; rewrite /edge_rel /= /edge_rel /=.
    rewrite -!(inj_eq val_inj) /=. by rewrite eq_ux eq_vy.
  - movea b. rewrite /edge_rel /= /edge_rel /=.
    rewrite -!(inj_eq val_inj) /=. by rewrite eq_ux eq_vy.
Qed.

K4-freenes of Intervals


Lemma igraph_K4F (G : sgraph) (i o x y : G) :
  connected [set: G]
  x \in cp i o y \in cp i o x != y
  K4_free (add_edge G i o)
  K4_free (add_edge (igraph G x y) istart iend).
Proof.
  set H := add_edge G i o.
  set I := add_edge _ _ _.
  moveG_conn x_cpio y_cpio xNy; apply: minor_K4_free.
  have iNo : i != o.
  { apply: contra_neq xNyx_y. move: x_cpio y_cpio.
    by rewrite -{}x_y cpxx !inE =>/eqP->/eqP→. }

  have conn_io : connect sedge i o := connectedTE G_conn i o.
  wlog x_le_y : x y @I x_cpio y_cpio xNy / cpo conn_io x y.
  { moveHyp. case/orP: (cpo_total conn_io x y); first exact: Hyp.
    move⇒ ?; suff : minor (add_edge (igraph G y x) istart iend) I.
    { by apply: minor_trans; apply: Hyp; rewrite // 1?sg_sym 1?eq_sym. }
    apply: strict_is_minor; apply: iso_strict_minor.
    setoid_rewrite add_edge_sym.
    by apply: add_edge_induced_iso; first exact: interval_sym. }

  pose U2 := [set x; y].
  have [i_Px o_Py] : i \in bag U2 x o \in bag U2 y.
  { split; apply/bagPz; rewrite CP_set2 (cpo_cp x_cpio y_cpio x_le_y);
    move⇒ /andP[z_cpio] /andP[x_le_z z_le_y].
    + rewrite (cpo_cp (mem_cpl i o) z_cpio);
      repeat (apply/andP; split) ⇒ //; exact: cpo_min.
    + have o_cpio : o \in cp i o by rewrite cp_sym mem_cpl.
      rewrite cp_sym (cpo_cp z_cpio o_cpio);
      repeat (apply/andP; split) ⇒ //; exact: cpo_max. }

  case: (collapse_bags G_conn U2 x _); first by rewrite !inE eqxx.
  set T := U2 :|: _. have {T}-> : T = interval x y.
  { rewrite {}/T {-3}/U2 /interval bigcup_setU !bigcup_set1.
    congr ([set x; y] :|: _).
    rewrite -setTD (sinterval_bag_cover G_conn xNy).
    rewrite setUAC setDUl setDv set0U; apply/setDidPl.
    rewrite disjoint_sym disjoints_subset subUset -!disjoints_subset.
    by rewrite {2}sinterval_sym !interval_bag_disj //;
    apply: CP_extensive; rewrite !inE eqxx. }
  rewrite -[induced _]/(igraph G x y). set Gxy := igraph G x y in I ×.

  movephi [[phi_surj preim_phi_conn phi_edge] preim_phi preim_phixy].
  apply: strict_is_minor. phi; split; first exact: phi_surj.
  + moveu; have u_I : val u \in interval x y := valP u.
    case: (boolP (val u \in U2)) ⇒ u_xy.
    - rewrite preim_phixy //. apply: add_edge_connected.
      apply: (@connected_bag G G_conn (val u) U2).
      exact: CP_extensive.
    - rewrite preim_phi; first exact: connected1.
      by rewrite inE u_xy u_I.
  + moveu v /orP[].
    - move/phi_edge ⇒ [u'] [v'] [? ? uv'].
      by u'; v'; split; rewrite /edge_rel //= uv'.
    - wlog [-> → _] : u v / u = istart v = iend.
      { case/(_ istart iend); [ by split | by rewrite /= !eqxx xNy | ].
        moveu' [v'] [? ? ?]. have ? : v' -- u' by rewrite sg_sym.
        case/orP⇒ /andP[_]/andP[/eqP->/eqP->];
          [ by u'; v' | by v'; u' ]. }
      rewrite 2?preim_phixy ?inE ?eqxx // ![val _]/=.
      by i; o; split; rewrite /edge_rel //= iNo !eqxx.
Qed.

Lemma igraph_K4F_add_node (G : sgraph) (U : {set G}) :
  connected [set: G] x y, x \in CP U y \in CP U x != y
  K4_free (add_node G U) K4_free (add_edge (igraph G x y) istart iend).
Proof.
  set H := add_node G UG_conn x y x_cp y_cp xy H_K4F.
  set I := add_edge _ _ _.

  case: (CP_base x_cp y_cp) ⇒ [i] [o] [i_U o_U].
  rewrite subUset !sub1set =>/andP[x_cpio y_cpio].
  suff : K4_free (add_edge G i o) by exact: igraph_K4F ⇒ //.
  set K := add_edge G i o.
  apply: minor_K4_free H_K4F. apply: strict_is_minor.

  set phi : H K := odflt i.
  have preim_phi u :
    phi @^-1 u = Some u |: if u == i then [set None] else set0.
  { by apply/setPv; case: ifPu_i; rewrite -mem_preim !inE ?orbF;
    case: v ⇒ [v|] //=; rewrite eq_sym. }
  have preim_phixx u : Some u \in phi @^-1 u by rewrite -mem_preim.

   phi; split.
  + by move⇒ /= u; (Some u).
  + move⇒ /= u; rewrite preim_phi.
    case: ifP ⇒ [/eqP{u}->|_]; first exact: connected2.
    by rewrite setU0; exact: connected1.
  + moveu v /orP[]; first by [ (Some u); (Some v); split ].
    move⇒ /orP[]/andP[_]/andP[/eqP->/eqP->];
    [ None; (Some o) | (Some o); None ];
    by split; rewrite // -mem_preim.
Qed.

Parallel Split Lemma


Lemma sepatates_cp (G : sgraph) (x y z : G) : separates x y [set z] z \in cp x y :\: [set x; y].
Proof.
  case. rewrite !inE ![z == _]eq_sym ⇒ /negbTE→ /negbTE→ /= H.
  apply/cpPp. by case: (H p) ⇒ z' Hz /set1P <-.
Qed.

TOTHINK: Make this the definition of the link relation? Is the link relation realiy needed in the first place ?
Lemma link_rel_sep2 (G : sgraph) (x y : G) :
  connected [set: G] ~~ x -- y link_rel x y
  x != y S, separates x y S 2 #|S|.
Proof.
  movecon_G xNy /andP [xDy cp_sub]. split ⇒ // S sep_xy.
  case E : #|S| ⇒ [|[|//]].
  - move/cards0_eq : EE. subst S. move/connectedTE : con_G ⇒ /(_ x y).
    apply: contraTT_. exact/separates0P.
  - move/eqP/cards1P : E ⇒ [z Hz]. subst. move/sepatates_cp in sep_xy. by set_tac.
Qed.

Lemma set_pred0 (T : finType) : @set0 T =i pred0.
Proof. movez. by rewrite !inE. Qed.
Hint Resolve set_pred0 : core.

Lemma irred_in_sinterval (G : sgraph) (i o : G) (p : Path i o) :
  irred p {subset interior p sinterval i o}.
Proof.
  moveIp u. rewrite 5!inE negb_or -andbA ⇒ /and3P [U1 U2 U3].
  case/(isplitP Ip) : U3 ⇒ {p Ip} p1 p2 Ip1 Ip2 I. apply/sintervalP2. split.
  - (prev p1); rewrite ?irred_rev // inE. apply: contraNN U2in_p. by rewrite [o]I.
  - p2 ⇒ //. apply: contraNN U1in_p. by rewrite [i]I.
Qed.

Open Scope implicit_scope.

Lemma ssplit_K4_nontrivial (G : sgraph) (i o : G) :
  ~~ i -- o link_rel i o K4_free (add_edge G i o)
  
  connected [set: G] disconnected (sinterval i o).
Proof.
  moveio1 L K4F conn_G. case: (link_rel_sep2 conn_G io1 L) ⇒ io2 io3 {L}.
  case: (theta io1 io2 io3) ⇒ p indep_p.
  case: (theta_vertices p io2 io1) ⇒ x in_p.
  apply/disconnectedEconn_io.
  have in_io j : x j \in sinterval i o.
  { apply: irred_in_sinterval (in_p _). exact: valP. }
  case: (path_in_connected conn_io (in_io ord0) (in_io ord1)) ⇒ q' Iq /subsetP sub_io.
  case: (split_at_first (A := mem (interior (p ord1))) (p := q') (k := x ord1)).
    all: try by [exact: in_p|].
  movex2 [q1'] [q2] [E Q1 Q2].
  have Iq1 : irred q1'. move: Iq. rewrite E. by case/irred_catE.
  apply: K4F.
  case: (add_edge_Path i o (p ord0)) ⇒ p0 N0.
  case: (add_edge_Path i o (p ord1)) ⇒ p1 N1.
  case: (add_edge_Path i o q1') ⇒ q Nq.
  have io : i -- o :> add_edge G i o by rewrite /edge_rel/= io2 !eqxx.
  pose p2 := edgep io.
  apply (@K4_of_paths (add_edge G i o)) with i o (x ord0) x2 p0 p1 p2 q ⇒ //.
  - rewrite (independent_nodes N0 N1). exact: indep_p.
  - by rewrite /independent interior_edgep disjoint_sym eq_disjoint0.
  - by rewrite /independent interior_edgep disjoint_sym eq_disjoint0.
  - by rewrite (interior_eq_nodes N0).
  - by rewrite (interior_eq_nodes N1).
  - rewrite (irred_eq_nodes N0). exact: valP.
  - rewrite (irred_eq_nodes N1). exact: valP.
  - exact: irred_edge.
  - by rewrite (irred_eq_nodes Nq).
  - apply/disjointPz. rewrite (mem_eq_nodes Nq) ⇒ z_q1'. case/set2P ⇒ [?|?]; subst.
    + move: (sub_io i). by rewrite sinterval_bounds !inE z_q1' ⇒ /(_ isT).
    + move: (sub_io o). by rewrite sinterval_bounds !inE z_q1' ⇒ /(_ isT).
  - movez. rewrite (interior_edgep) inE /= in_set0 orbF (mem_eq_nodes Nq).
    rewrite (interior_eq_nodes N1). exact: Q2.
Qed.

Close Scope implicit_scope.