Library RelationAlgebra.normalisation

normalisation: generic normalisation procedure and associated tactics


Require Import kleene syntax powerfix.

Set Implicit Arguments.

Section n.
Variables (s t: positive positive).
Notation expr := (expr s t).
Local Arguments weq {_} _ _: simpl never.
Local Arguments leq {_} _ _: simpl never.
Local Hint Extern 0 (_ _) ⇒ solve_lower || solve_lower': typeclass_instances.
Ltac fold_expr l := ra_fold (expr_ops s t l).

normalisation procedure

We normalise expressions in such a way that:
  • sums are flattened, left-associated, ordered (without duplicates), and without bottom or top elements
  • intersections are simply cleaned w.r.t bottom and top elements
  • products are left-associated, and possibly distributed over sums (specified using a boolean parameter)
  • unit and annihilators are ruled out as much as possible
  • strict iterations and Kleene stars do not contain inner iterations
  • converses are pushed to the leaves
Some additional simplifications are possible, we plan to integrate them lazily, on demand.
The normalisation function is defined in such a way that
  • the level of the resulting expression cannot increase w.r.t. the level of the initial one, and
  • it yields an expression which is equal to the starting one, *at the level of that expression*
(in particular unions cannot be used to simplify lonely iterations)

normalising sums


Fixpoint insert_pls n m (x: expr n m): expr n m expr n m :=
  match x with
    | e_zer _ _fun yy
    | e_top _ _fun ytop
    | e_pls x zfun y
      match cmp y z with
        | Ltinsert_pls x y+z
        | Gtx+z+y
        | Eqx+z
      end
    | xfun y
      match cmp x y with
        | Ltx+y
        | Gty+x
        | Eqy
      end
  end%ast.

Fixpoint pls' n m (y: expr n m): expr n m expr n m :=
  match y with
    | e_zer _ _fun xx
    | e_top _ _fun ytop
    | e_pls y zfun xinsert_pls (pls' y x) z
    | yfun xinsert_pls x y
  end%ast.

Lemma insert_pls_level n m (x y: expr n m): e_level (insert_pls x y) CUP+e_level x+e_level y.
Proof.
  induction x; simpl; try case cmp_spec;
    simpl e_level; intros; try solve_lower'.
  rewrite IHx1. solve_lower'.
Qed.

Lemma insert_pls_pls: l n m (x y: expr n m) {Hl: CUP+e_level x l},
  insert_pls x y ==_[l] y+x.
Proof.
  assert (D: n m (x y: expr n m) l, CUP+e_level x l
    y+x ==_[l] match cmp x y with Ltx+y | Gty+x | Eqy end).
   intros. case cmp_spec; intros; try subst; lattice.

  intros; symmetry; induction x; simpl e_level in *; try (apply D; solve_lower).
   lattice.
   lattice.
   simpl insert_pls. case cmp_spec; intros.
    subst. lattice.
    fold_expr l. rewrite <- IHx1 by solve_lower'. lattice.
    lattice.
Qed.

Lemma pls'_level n m (x y: expr n m): e_level (pls' x y) CUP+e_level x+e_level y.
Proof.
  induction x; simpl pls'; simpl e_level;
    rewrite ?insert_pls_level, ?IHx1, ?IHx; solve_lower'.
Qed.

Lemma pls'pls: l n m (x y: expr n m) {Hl: CUP+e_level x+e_level y l},
  pls' x y ==_[l] x+y.
Proof.
  induction x; simpl e_level; simpl pls'; intros y Hl;
    try (subst; now rewrite insert_pls_pls by solve_lower').
  lattice.
  lattice.
  rewrite insert_pls_pls, IHx1 by (rewrite ?pls'_level; solve_lower'). lattice.
Qed.

Lemma pls'x0_level n m (x: expr n m): e_level (pls' x 0) e_level x.
Proof. induction x; try reflexivity. simpl. now rewrite insert_pls_level, IHx1. Qed.

Lemma pls'x0 n m (x: expr n m) l `{CUP+e_level x l}: pls' x 0 ==_[l] x.
Proof.
  induction x; try reflexivity. simpl pls'. simpl e_level in ×.
  rewrite insert_pls_pls, IHx1. apply cupC. solve_lower'.
  rewrite pls'x0_level. solve_lower'.
Qed.

normalising intersections

we simply remove zeros and tops (TODO: normalise like for sums, distribute over sums)

Definition cap' n m (x y: expr n m) :=
  if is_top x then y
  else if is_top y then x
  else if is_zer x ||| is_zer y then e_zer _ _
  else e_cap x y.

Lemma cap'cap l n m (x y: expr n m) {Hl: CAP+e_level x+e_level y l}:
  cap' x y ==_[l] x y.
Proof.
  symmetry. unfold cap'. revert Hl.
  case is_top_spec. intros. apply captx.
  case is_top_spec. intros. apply capxt.
  case is_zer_spec. intros. apply capbx.
  case is_zer_spec. intros. apply capxb.
  reflexivity.
Qed.

Lemma cap'_level n m (x y: expr n m): e_level (cap' x y) CAP+e_level x+e_level y.
Proof.
  unfold cap'.
  case is_top_spec. solve_lower'.
  case is_top_spec. solve_lower'.
  case is_zer_spec. solve_lower'.
  case is_zer_spec; solve_lower'.
Qed.

normalising products

(without ones or zeros, left associative, and possibly distributed over sums)
whether we distribute the products over sums is controlled by the following parameter
Variable distribute: bool.

Ltac case_distribute :=
  match goal with |- context[distribute] ⇒ case distribute | _idtac end.

Fixpoint dot_l n m (x: expr n m): p, expr m p expr n p :=
  match x in syntax.expr _ _ n m return p, expr m p expr n p with
    | e_zer _ _fun p y ⇒ 0
    | e_one _fun p yy
    | e_pls x1 x2fun p y
      if distribute then pls' (dot_l x1 y) (dot_l x2 y)
      else (x1+x2)⋅y
    | xfun p yx y
  end%ast.

Fixpoint dot_r m p (y: expr m p): n, expr n m expr n p :=
  match y in syntax.expr _ _ m p return n, expr n m expr n p with
    | e_zer _ _fun n x ⇒ 0
    | e_one _fun n xx
    | e_pls y1 y2fun n x
      if distribute then pls' (dot_r y1 x) (dot_r y2 x)
      else dot_l x (y1+y2)
    | e_dot y zfun n xdot_l (dot_r y x) z
    | yfun n xdot_l x y
  end%ast.

Definition dot' n m p (x: expr n m) (y: expr m p) := dot_r y x.

Lemma dot_l_level n m p (x: expr n m) (y: expr m p):
  e_level (dot_l x y) e_level x + e_level y.
Proof.
  revert p y.
  induction x; intros q z; simpl dot_l; case_distribute; simpl e_level;
    rewrite ?pls'_level, ?IHx1, ?IHx2; solve_lower'.
Qed.

Lemma dot_r_level n m p (x: expr n m) (y: expr m p):
  e_level (dot_r y x) e_level x + e_level y.
Proof.
  revert n x.
  induction y; intros q z; simpl dot_r; case_distribute; simpl e_level;
    rewrite ?pls'_level, ?dot_l_level, ?IHy1, ?IHy2; solve_lower'.
Qed.

Lemma dot'_level n m p (x: expr n m) (y: expr m p):
  e_level (dot' x y) e_level x + e_level y.
Proof. apply dot_r_level. Qed.

Lemma dot_l_weq l n m p (x: expr n m) (y: expr m p) {Hl: e_level x + e_level y l}:
  xy ==_[l] dot_l x y.
Proof.
  revert p y Hl.
  induction x; intros q z Hl; simpl dot_l; case_distribute; simpl e_level in Hl; try reflexivity.
   apply dot0x.
   apply dot1x.
   now rewrite dotplsx, pls'pls, <-IHx1, <-IHx2 by (rewrite ?dot_l_level; solve_lower').
Qed.

Lemma dot'dot l n m p (x: expr n m) (y: expr m p) {Hl: e_level y+e_level x l}:
  dot' x y ==_[l] xy.
Proof.
  symmetry. unfold dot'. revert n x Hl.
  induction y; simpl e_level; intros q z Hl; simpl dot_r; case_distribute;
    try reflexivity; try (apply dot_l_weq; solve_lower').
   apply dotx0.
   apply dotx1.
   now rewrite dotxpls, pls'pls, <-IHy1, <-IHy2 by (rewrite ?dot_r_level; solve_lower').
   now rewrite <-dot_l_weq, <-IHy1, dotA by (rewrite ?dot_r_level; solve_lower').
Qed.

normalising converses

by pushing them down towards the leaves

Fixpoint cnv' n m (x: expr n m): expr m n :=
  match x with
    | e_zer _ _ ⇒ 0
    | e_top _ _top
    | e_one _ ⇒ 1
    | e_pls x ycnv' x + cnv' y
    | e_cap x ycnv' x cnv' y
    | e_neg x! cnv' x
    | e_dot x ydot' (cnv' y) (cnv' x)
    | e_ldv x ye_rdv (cnv' x) (cnv' y)
    | e_rdv x ye_ldv (cnv' x) (cnv' y)
    | e_itr x(cnv' x)^+
    | e_str x(cnv' x)^*
    | e_cnv xx
    | e_var a(e_var a
  end%ast.

Lemma cnv'_level n m (x: expr n m): e_level (cnv' x) CNV+e_level x.
Proof.
  induction x; simpl cnv'; simpl e_level;
    rewrite ?dot'_level, ?pls'_level, ?cap'_level, ?IHx1, ?IHx2, ?IHx; solve_lower'.
Qed.

Lemma cnv'cnv l n m (x: expr n m) {Hl: CNV+e_level x l}: cnv' x ==_[l] x°.
Proof.
  symmetry. induction x; simpl cnv'; simpl e_level in Hl;
  rewrite ?dot'dot, ?e_str' by (rewrite ?cnv'_level; solve_lower').
  apply cnv0.
  apply cnvtop.
  apply cnv1.
  rewrite cnvpls. apply cup_weq; [apply IHx1|apply IHx2]; solve_lower'.
  rewrite cnvcap. apply cap_weq; [apply IHx1|apply IHx2]; solve_lower'.
  rewrite cnvneg. apply neg_weq, IHx. solve_lower'.
  rewrite cnvdot. apply dot_weq; [apply IHx2|apply IHx1]; solve_lower'.
  rewrite cnvitr. apply itr_weq, IHx. solve_lower'.
  rewrite cnvstr. apply str_weq, IHx. solve_lower'.
  apply cnv_invol.
  rewrite cnvldv. apply rdv_weq; [apply IHx1|apply IHx2]; solve_lower'.
  rewrite cnvrdv. apply ldv_weq; [apply IHx1|apply IHx2]; solve_lower'.
  reflexivity.
Qed.

removing toplevel iterations in an iterated sum


Fixpoint remove n m (x: expr n m): expr n m :=
  match x with
    | e_itr xx
    | e_pls x ypls' (remove x) (remove y)
    | xx
  end.

Definition itr' n (x: expr n n): expr n n :=
  (if is_zer x then 0
  else if is_top x then top
  else (remove x)^+)%ast.

Definition str' n (x: expr n n): expr n n :=
  (if is_zer x then 1
  else if is_top x then top
  else (remove x)^*)%ast.

Lemma remove_level n m (x: expr n m): e_level (remove x) e_level x.
Proof. induction x; cbn; rewrite ?pls'_level; solve_lower'. Qed.

Lemma itr'_level n (x: expr n n): e_level (itr' x) STR+e_level x.
Proof.
  unfold itr'.
  case is_zer_spec. reflexivity.
  case is_top_spec. solve_lower'.
  cbn. now rewrite remove_level.
Qed.

Lemma str'_level n (x: expr n n): e_level (str' x) STR+e_level x.
Proof.
  unfold str'.
  case is_zer_spec. reflexivity.
  case is_top_spec. solve_lower'.
  cbn. now rewrite remove_level.
Qed.

Lemma remove_spec_dep l n m (x: expr n m):
   (H: n=m) {Hl: STR+e_level x l}, (cast H eq_refl (remove x))^+ ==_[l] (cast H eq_refl x)^+.
Proof.
  induction x; cbn; trivial; intros H Hl.
  - subst. cbn. rewrite itr_pls_itr, pls'pls by (rewrite 2remove_level; solve_lower').
    rewrite <-(IHx1 eq_refl), <-(IHx2 eq_refl) by solve_lower'. simpl cast. apply itr_pls_itr.
  - now rewrite 2cast_eq, itr_invol.
Qed.

Lemma remove_spec l n (x: expr n n) {Hl: STR+e_level x l}:
  (remove x)^+ ==_[l] x^+.
Proof. apply (remove_spec_dep _ eq_refl). Qed.

Lemma itr'itr l n (x: expr n n) {Hl: STR+e_level x l}:
  itr' x ==_[l] x^+.
Proof.
  symmetry. unfold itr'. revert Hl.
  case is_zer_spec. intros. apply itr0.
  case is_top_spec. intros. apply itrtop.
  intros. symmetry. now apply remove_spec.
Qed.

Lemma remove_spec_dep' l n m (x: expr n m): (H: n=m) {Hl: STR+e_level x l},
  (cast H eq_refl (remove x))^* ==_[l] (cast H eq_refl x)^*.
Proof.
  induction x; cbn; trivial; intros H Hl.
  - subst. simpl cast. rewrite str_pls_str.
    rewrite <-(IHx1 eq_refl), <-(IHx2 eq_refl) by solve_lower'.
    simpl cast. rewrite <-str_pls_str. apply str_weq. apply pls'pls.
    rewrite 2remove_level; solve_lower'.
  - rewrite 2cast_eq. apply antisym.
    apply str_leq. apply itr_ext.
    apply str_ind_l1. apply str_refl. now rewrite itr_str_l, str_cons, str_trans.
Qed.

Lemma remove_spec' l n (x: expr n n) {Hl: STR+e_level x l}:
  (remove x)^* ==_[l] x^*.
Proof. apply (remove_spec_dep' _ eq_refl). Qed.

Lemma str'str l n (x: expr n n) {Hl: STR+e_level x l}:
  str' x ==_[l] x^*.
Proof.
  symmetry. unfold str'. revert Hl.
  case is_zer_spec. intros. apply str0.
  case is_top_spec. intros. apply strtop.
  intros. symmetry. now apply remove_spec'.
Qed.

global normalisation function


Fixpoint norm n m (x: expr n m): expr n m :=
  match x with
    | e_zer _ _ ⇒ 0
    | e_top _ _top
    | e_one _ ⇒ 1
    | e_pls x ypls' (norm x) (norm y)
    | e_cap x ycap' (norm x) (norm y)
    | e_neg xe_neg (norm x)
    | e_dot x ydot' (norm x) (norm y)
    | e_ldv x ye_ldv (norm x) (norm y)
    | e_rdv x ye_rdv (norm x) (norm y)
    | e_itr xitr' (norm x)
    | e_str xstr' (norm x)
    | e_cnv xcnv' (norm x)
    | e_var ae_var a
  end%ast.

Lemma norm_level n m (x: expr n m): e_level (norm x) e_level x.
Proof.
  induction x; simpl norm; simpl e_level;
    rewrite ?dot'_level, ?pls'_level, ?cap'_level, ?cnv'_level,
      ?itr'_level, ?str'_level, ?IHx1, ?IHx2, ?IHx; solve_lower'.
Qed.

Lemma norm_weq l n m (x: expr n m) {Hl: e_level x l}: norm x ==_[l] x.
Proof.
  induction x; simpl norm; simpl e_level in Hl; try reflexivity;
    rewrite ?pls'pls, ?cap'cap, ?dot'dot, ?itr'itr, ?str'str, ?cnv'cnv, ?e_str'
      by (rewrite ?norm_level; solve_lower').
  apply cup_weq; [apply IHx1|apply IHx2]; solve_lower'.
  apply cap_weq; [apply IHx1|apply IHx2]; solve_lower'.
  apply neg_weq, IHx. solve_lower'.
  apply dot_weq; [apply IHx1|apply IHx2]; solve_lower'.
  apply itr_weq, IHx. solve_lower'.
  apply str_weq, IHx. solve_lower'.
  apply cnv_weq, IHx. solve_lower'.
  apply ldv_weq; [apply IHx1|apply IHx2]; solve_lower'.
  apply rdv_weq; [apply IHx1|apply IHx2]; solve_lower'.
Qed.

partial decision procedure for expressions containment <==

The following function tries to prove x y, for some expressions x and y.
  • this function always terminates, but using powerfix allows us to write a clean code, without bothering about termination
  • this algorithm is not complete, of course.
  • like for syntactic comparison (syntax.expr_compare), we need to generalise the function to work on distinct expression types

Definition expr_leq := powerfix 100
  (fun leq tt n m (x: expr n m) p q (y: expr p q) ⇒
    let leq {n m} x {p q} y := leq tt n m x p q y in
    match x,y with
      | e_zer _ _, _
      | _, e_top _ _
      | e_one _, e_one _
      | e_one _, e_str _true
      | e_one _, e_itr yleq x y
      | e_var a, e_var beqb a b
      | e_pls x x', _leq x y &&& leq x' y
      | _, e_cap y y'leq x y &&& leq x y'
      | e_cap x x', _leq x y ||| leq x' y
      | _, e_pls y y'leq x y ||| leq x y'
      | @e_dot _ _ _ _ u _ x x', @e_dot _ _ _ _ v _ y y'
      | @e_ldv _ _ _ u _ _ y x', @e_ldv _ _ _ v _ _ x y'
      | @e_rdv _ _ _ u _ _ y x', @e_rdv _ _ _ v _ _ x y'eqb u v &&& leq x y &&& leq x' y'
      | e_one _, e_ldv x y
      | e_one _, e_rdv x y
      | e_neg y, e_neg x
      | e_itr x, e_itr y
      | e_itr x, e_str y
      | e_str x, e_str y
      | e_cnv x, e_cnv yleq x y
      | _,_false
    end) (fun _ _ _ _ _ _ _false) tt.

Lemma expr_leq_correct_dep l: n m (x: expr n m) p q (y: expr p q),
   Hnp: n=p, Hmq: m=q,
  expr_leq x y = true
  e_level x + e_level y l
  cast Hnp Hmq x <==_[l] y.
Proof.
  unfold expr_leq. apply powerfix_invariant. 2: discriminate.
  intros leq IH n m x p q y Hnp Hmq H Hl.
FIXME : subst here causes an effect leak
  destruct x; simpl e_level in Hl; repeat match goal with [ H : ?m = ?n |- _ ] ⇒ rewrite H in *; clear H end.
  - rewrite cast_eq. lattice.
  - destruct y; simpl e_level in Hl; try discriminate H.
    + now rewrite cast_eq.
    + apply leq_xcup. apply lorb_spec in H as [H|H];
      apply (IH _ _ _ _ _ _ eq_refl eq_refl) in H; auto; solve_lower'.
    + apply landb_spec in H as [H1 H2]. apply leq_xcap; apply IH; trivial; solve_lower'.
  - destruct y; simpl e_level in Hl; try discriminate H; try subst.
    + subst. rewrite cast_eq. lattice.
    + now rewrite cast_eq.
    + subst. apply leq_xcup. apply lorb_spec in H as [H|H];
      apply (IH _ _ _ _ _ _ eq_refl eq_refl) in H; auto; solve_lower'.
    + apply landb_spec in H as [H1 H2]. apply leq_xcap; apply IH; trivial; solve_lower'.
    + rewrite <-itr_ext. apply IH. assumption. solve_lower'.
    + rewrite cast_eq. apply str_refl.
    + subst. rewrite cast_eq. apply ldv_spec. rewrite dotx1.
      apply (IH _ _ _ _ _ _ eq_refl eq_refl H); solve_lower'.
    + subst. rewrite cast_eq. apply rdv_spec. rewrite dot1x.
      apply (IH _ _ _ _ _ _ eq_refl eq_refl H); solve_lower'.
  - destruct y; simpl e_level in Hl; try discriminate H; try subst;
    try (apply landb_spec in H as [H1 H2]; apply leq_cupx;
          [ apply (IH _ _ _ _ _ _ eq_refl eq_refl H1); solve_lower'
          | apply (IH _ _ _ _ _ _ eq_refl eq_refl H2); solve_lower' ]).
    lattice.
  - destruct y; simpl e_level in Hl; try discriminate H; try subst;
    try (rewrite cast_eq; apply leq_capx; apply lorb_spec in H as [H|H];
        (apply (IH _ _ _ _ _ _ eq_refl eq_refl) in H; [auto |solve_lower'])).
    lattice.
    rewrite cast_eq. apply landb_spec in H as [H1 H2].
     apply (IH _ _ _ _ _ _ eq_refl eq_refl) in H1; [|solve_lower'].
     apply (IH _ _ _ _ _ _ eq_refl eq_refl) in H2; [|solve_lower'].
     hlattice.
  - destruct y; simpl e_level in Hl; try discriminate H; try subst.
    + lattice.
    + apply leq_xcup. apply lorb_spec in H as [H|H];
      apply (IH _ _ _ _ _ _ eq_refl eq_refl) in H; auto; solve_lower'.
    + apply landb_spec in H as [H1 H2]. apply leq_xcap; apply IH; trivial; solve_lower'.
    + rewrite cast_eq. apply neg_leq.
      apply (IH _ _ _ _ _ _ eq_refl eq_refl H). solve_lower'.
  - destruct y; simpl e_level in Hl; try discriminate H; try subst.
    + lattice.
    + apply leq_xcup. apply lorb_spec in H as [H|H];
      apply (IH _ _ _ _ _ _ eq_refl eq_refl) in H; auto; solve_lower'.
    + apply landb_spec in H as [H1 H2]. apply leq_xcap; apply IH; trivial; solve_lower'.
    + rewrite cast_eq. apply landb_spec in H as [H' H]. apply landb_spec in H as [H1 H2].
      revert H'. case eqb_spec. 2: discriminate. intros ? _. subst.
      apply dot_leq.
       apply (IH _ _ _ _ _ _ eq_refl eq_refl H1); solve_lower'.
       apply (IH _ _ _ _ _ _ eq_refl eq_refl H2); solve_lower'.
  - destruct y; simpl e_level in Hl; try discriminate H; try subst.
    + lattice.
    + subst. apply leq_xcup. apply lorb_spec in H as [H|H];
      apply (IH _ _ _ _ _ _ eq_refl eq_refl) in H; auto; solve_lower'.
    + apply landb_spec in H as [H1 H2]. apply leq_xcap; apply IH; trivial; solve_lower'.
    + rewrite cast_eq. apply itr_leq.
      apply (IH _ _ _ _ _ _ eq_refl eq_refl H); solve_lower'.
    + rewrite cast_eq. rewrite itr_str_l, <-(str_cons y).
      apply (IH _ _ _ _ _ _ eq_refl eq_refl) in H. 2: solve_lower'.
      simpl cast in H. now rewrite H.
  - destruct y; simpl e_level in Hl; try discriminate H; try subst.
    + lattice.
    + subst. apply leq_xcup. apply lorb_spec in H as [H|H];
      apply (IH _ _ _ _ _ _ eq_refl eq_refl) in H; auto; solve_lower'.
    + apply landb_spec in H as [H1 H2]. apply leq_xcap; apply IH; trivial; solve_lower'.
    + rewrite cast_eq. apply str_leq.
      apply (IH _ _ _ _ _ _ eq_refl eq_refl H); solve_lower'.
  - destruct y; simpl e_level in Hl; try discriminate H; try subst.
    + lattice.
    + apply leq_xcup. apply lorb_spec in H as [H|H];
      apply (IH _ _ _ _ _ _ eq_refl eq_refl) in H; auto; solve_lower'.
    + apply landb_spec in H as [H1 H2]. apply leq_xcap; apply IH; trivial; solve_lower'.
    + rewrite cast_eq. apply cnv_leq.
      apply (IH _ _ _ _ _ _ eq_refl eq_refl H); solve_lower'.
  - destruct y; simpl e_level in Hl; try discriminate H; try subst.
    + lattice.
    + apply leq_xcup. apply lorb_spec in H as [H|H];
      apply (IH _ _ _ _ _ _ eq_refl eq_refl) in H; auto; solve_lower'.
    + apply landb_spec in H as [H1 H2]. apply leq_xcap; apply IH; trivial; solve_lower'.
    + rewrite cast_eq. apply landb_spec in H as [H' H]. apply landb_spec in H as [H1 H2].
      revert H'. case eqb_spec. 2: discriminate. intros ? _. subst.
      apply ldv_leq.
       apply (IH _ _ _ _ _ _ eq_refl eq_refl H1); solve_lower'.
       apply (IH _ _ _ _ _ _ eq_refl eq_refl H2); solve_lower'.
  - destruct y; simpl e_level in Hl; try discriminate H; try subst.
    + lattice.
    + apply leq_xcup. apply lorb_spec in H as [H|H];
      apply (IH _ _ _ _ _ _ eq_refl eq_refl) in H; auto; solve_lower'.
    + apply landb_spec in H as [H1 H2]. apply leq_xcap; apply IH; trivial; solve_lower'.
    + rewrite cast_eq. apply landb_spec in H as [H' H]. apply landb_spec in H as [H1 H2].
      revert H'. case eqb_spec. 2: discriminate. intros ? _. subst.
      apply rdv_leq.
       apply (IH _ _ _ _ _ _ eq_refl eq_refl H1); solve_lower'.
       apply (IH _ _ _ _ _ _ eq_refl eq_refl H2); solve_lower'.
  - destruct y; simpl e_level in Hl; try discriminate H; subst.
    + lattice.
    + apply leq_xcup. apply lorb_spec in H as [H|H]; eapply IH in H; eauto; solve_lower'.
    + apply landb_spec in H as [H1 H2]. apply leq_xcap; apply IH; trivial; solve_lower'.
    + apply eqb_eq in H. subst. now rewrite cast_eq.
Qed.

correctness of the comparison function
Corollary expr_leq_correct l n m (x y: expr n m):
  expr_leq x y = true
  e_level x + e_level y l
  x <==_[l] y.
Proof. apply (expr_leq_correct_dep x y eq_refl eq_refl). Qed.

Associated tactics

parametrised (in)equality tests, where we decide to check for an equality or an inequality depending on the Boolean b. This helps to factorise tactics code.

Definition expr_leq_or_weq (b: bool) n m (x y: expr n m) :=
  if b then expr_leq x y else eqb x y.

Lemma expr_leq_or_weq_correct b l n m (x y: expr n m):
  e_level x + e_level y l
  expr_leq_or_weq b x y @leq_or_weq b (expr_lattice_ops _ _ l _ _) x y.
Proof.
  intros Hl H. destruct b. apply expr_leq_correct; assumption.
  apply eqb_eq in H as <-. reflexivity.
Qed.

End n.

normalisation lemma, suited for use with reification ; we use two "let-in" constructs to make it possible to isolate computations of the normal forms (using vm_compute) from the unfolding of the interpretation function (using "unfold" selectively)

Lemma ra_normalise d b `{L: laws} f' (f: positive Pack X f')
  n m (x y: expr _ _ n m) (Hl: e_level x + e_level y l):
  (let x' := norm d x in let y' := norm d y in packed_eval f x' <=[b]= packed_eval f y')
  packed_eval f x <=[b]= packed_eval f y.
Proof.
  unfold packed_eval. intro H.
  eapply leq_or_weq_weq; [symmetry.. | eassumption];
    (eapply norm_weq; [ | eassumption]); solve_lower'.
Qed.

reflexivity-by-normalisation lemma, suited for use with reification

Lemma ra b `{L: laws} f' (f: positive Pack X f')
  n m (x y: expr _ _ n m) (Hl: e_level x + e_level y l):
  expr_leq_or_weq b (norm true x) (norm true y) = true packed_eval f x <=[b]= packed_eval f y.
Proof.
  intro H. apply (ra_normalise true b). assumption.
  intros x' y'. subst x' y'. eapply expr_leq_or_weq_correct in H.
  destruct b; apply (H _ L).
  now rewrite 2norm_level.
Qed.

ra: solve goals by normalisation.

In case of an inequality, the above comparison function is used, so that apply antisym; ra might solve goals which are not solved by ra. (e.g., a+a^*+b^* b+a^*+b^*)

Ltac ra :=
  let go h L tac :=
    ra_reify h;
    let lhs:=fresh "lhs" in
    let rhs:=fresh "rhs" in
    intros ? ? ? ? lhs rhs;
    apply (@ra _ _ _ L _ _ _ _ lhs rhs);
    [ tac || fail "RelationAlgebra: invalid reification (please report)" |
      close_by_reflection true || fail "not provable by relation algebra normalisation" ]
  in
  intros; catch_rel;
  let L:=fresh "L" in intro L;
  let l:=match type of L with laws ?l _l end in
  lazymatch goal with
  | H: ?h l |- _go h L ltac:(rewrite <- H; reflexivity)
  | _go l L ltac:(reflexivity || destruct l; reflexivity)
  end.


ra_normalise/simpl: normalise the current goal


Ltac ra_normalise_ distribute :=
  let go h L tac :=
    ra_reify h;
    let tenv:=fresh "tenv" in
    let env:=fresh "env" in
    let src:=fresh "src" in
    let tgt:=fresh "tgt" in
    let lhs:=fresh "lhs" in
    let rhs:=fresh "rhs" in
    intros ? ? ? ? lhs rhs;
    apply (@ra_normalise distribute _ _ _ L _ _ _ _ lhs rhs);
    [ tac; reflexivity || fail "RelationAlgebra: invalid reification (please report)" |
      let lhs':=fresh "lhs'" in
      let rhs':=fresh "rhs'" in
      intros lhs' rhs';
      vm_compute in (value of lhs'), (value of rhs');
      unfold sigma_add in env, tenv;
      unfold lhs', rhs', packed_eval, eval, val, src, tgt, env, tenv, sigma_get;
      unfold leq_or_weq;
      clear tenv env src tgt lhs rhs lhs' rhs' L ]
  in
  catch_rel;
  let L:=fresh "L" in intro L;
  let l:=match type of L with laws ?l _l end in
  lazymatch goal with
  | H: ?h l |- _go h L ltac:(rewrite <- H; reflexivity)
  | _go l L ltac:(reflexivity || destruct l; reflexivity)
  end.

ra_normalise distribut products over sums, while ra_simpl does not

Ltac ra_simpl := ra_normalise_ false.
Ltac ra_normalise := ra_normalise_ true.