Mickael Geitner, PhD Thesis, ENS de Lyon (2015)
hal: tel-01235762
A l’aide d’un interféromètre différentiel à quadrature de phase nous mesurons les fluctuations thermiques de la déflexion d’un micro-levier. Il est alors possible de déduire différentes propriétés mécaniques du levier telles que raideur, fréquences de résonance, facteurs de qualité etc. Dans un tel système, la précision maximale sur les mesures est limitée par le bruit de grenaille des photodiodes (shot-noise). Afin d’augmenter le rapport signal sur bruit, nous augmentons l’intensité lumineuse du laser de mesure, diminuant ainsi le bruit de fond des spectres de fluctuations thermique. En revanche, l’augmentation de l’intensité du laser a pour effet de décaler vers les basses fréquences les résonances du levier. Une première partie de ce travail de thèse a pour objectif la compréhension de ce phénomène. Ainsi, nous associons le décalage en fréquence à un échauffement du levier par le laser de l’interféromètre et au flux de chaleur associé le long du levier. Nous développons alors un modèle permettant de relier cet effet à la température de l’extrémité du levier en se basant sur un profil de température linéaire. Une seconde partie de ce travail vise à mesurer la température effective d’un levier à l’aide d’une extension du théorème fluctuation-dissipation. Nous montrons que les fluctuations de ce système hors équilibre sont plus faibles que celles attendues compte tenu du profil de température. Nous cherchons alors à identifier l’origine de ce déficit de fluctuations. Dans une dernière partie nous estimons les profils de température sur des leviers en faisant varier leurs paramètres géométriques ou leur coefficient d’absorption, ainsi que la position du laser chauffant le levier.