Library GraphTheory.extraction_top
Require Import RelationClasses Morphisms Setoid Omega.
From mathcomp Require Import all_ssreflect.
Require Import edone finite_quotient preliminaries set_tac.
Require Import digraph sgraph treewidth minor checkpoint.
Require Import equiv setoid_bigop structures pttdom ptt mgraph mgraph2 ptt mgraph2_tw2 skeleton.
Require Import bounded extraction_def extraction_iso.
Require Import excluded.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Set Bullet Behavior "Strict Subproofs".
Section ExtractionTop.
Variable sym : Type.
Notation graph := (graph unit (flat sym)).
Notation graph2 := (graph2 unit (flat sym)).
Open Scope ptt_ops.
From mathcomp Require Import all_ssreflect.
Require Import edone finite_quotient preliminaries set_tac.
Require Import digraph sgraph treewidth minor checkpoint.
Require Import equiv setoid_bigop structures pttdom ptt mgraph mgraph2 ptt mgraph2_tw2 skeleton.
Require Import bounded extraction_def extraction_iso.
Require Import excluded.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Set Bullet Behavior "Strict Subproofs".
Section ExtractionTop.
Variable sym : Type.
Notation graph := (graph unit (flat sym)).
Notation graph2 := (graph2 unit (flat sym)).
Open Scope ptt_ops.
Arguments iso_id {Lv Le G}.
Arguments merge_union_K_l [Lv Le F K i o h] k.
Lemma iso2_TGT (G : graph2) : top · G · top ≃2 point (G ⊎ g2_top) (inr input) (inr output).
Proof.
rewrite→ topL, topR ⇒ /=.
Iso2 (iso_sym (union_A _ _ _)).
Qed.
Lemma iso2_GTG (G H : graph2) :
G · top · H ≃2 point (G ⊎ H) (unl input) (unr output).
Proof.
rewrite→ topR.
setoid_rewrite→ (merge_iso2 (iso_sym (union_A _ _ _))) ⇒ /=.
setoid_rewrite→ (merge_iso2 (union_iso iso_id (union_C _ _))) ⇒ /=.
rewrite→ (merge_iso2 (union_A _ _ _)) ⇒ /=.
rewrite→ (merge_union_K_l (fun _ ⇒ unr input))=>//.
2: case; apply/eqquotP; by eqv.
apply: merge_nothing. by repeat constructor.
Qed.
Lemma par_component (G : graph) (H : graph2) :
point (G ⊎ g2_top) (inr input) (inr output) ∥ H ≃2 point (G ⊎ H) (inr input) (inr output).
Proof.
rewrite→ par2C.
setoid_rewrite→ (merge_iso2 (union_A _ _ _)) =>/=.
rewrite→ (merge_union_K_l (fun x: two_graph _ _ ⇒ if x then unl input else unl output))=>//=.
setoid_rewrite→ (merge_iso2 (union_C _ _)) =>/=.
apply merge_nothing. by repeat constructor. by case.
move ⇒ [[]|[]] /=; apply/eqquotP; eqv.
Qed.
Notation induced2 := component.
Lemma component_induced (G : graph2) (C : {set G}) (iC : input \in C) (oC : output \in C) :
component C = point (induced C) (Sub input iC) (Sub output oC).
Proof.
rewrite /induced2. move: (setU11 _ _) ⇒ A. move: (setU1r _ _) ⇒ B. move: A B.
rewrite (setU1_mem oC) (setU1_mem iC) ⇒ A B.
by rewrite (bool_irrelevance A iC) (bool_irrelevance B oC).
Qed.
Definition component1 (G : graph) (x : G) :=
point (induced (@component_of (skeleton G) x))
(Sub x (@in_component_of (skeleton G) x))
(Sub x (@in_component_of (skeleton G) x)).
Lemma iso2_disconnected_component (G : graph2) x :
input \in ~: @component_of G x → output \in ~: @component_of G x →
G ≃2 top · (component1 x · top) ∥ component (~: @component_of G x).
Proof.
move ⇒ iC oC. symmetry.
rewrite (component_induced iC oC).
set C := component_of _.
rewrite /component1.
set G1 := point _ _ _. set G2 := point _ _ _.
rewrite → dot2A,iso2_TGT. simpl. setoid_rewrite → par_component.
rewrite /G1 /G2 /=.
have comp_C : C \in @components G [set: G]. apply: component_of_components.
Iso2 (iso_component comp_C).
Qed.
Lemma iso_disconnected_io (G : graph2) :
(∀ x : G, (x \in @component_of G input) || (x \in @component_of G output)) →
output \notin @component_of G input →
G ≃2 @component1 G input · (top · @component1 G output).
Proof.
move ⇒ no_comp dis_io. symmetry.
rewrite → dot2A. rewrite → iso2_GTG.
rewrite {1}/component1. rewrite /=.
move: (in_component_of _) ⇒ I1. move: (in_component_of _) ⇒ I2.
have E : @component_of G output = ~: @component_of G input.
{ apply/setP ⇒ z. rewrite inE. apply/idP/idP.
- move ⇒ Z1. apply: contraNN dis_io ⇒ Z2.
by rewrite -(same_component Z2) (same_component Z1).
- move/(_ z) : no_comp. by case: (z \in _). }
rewrite E in I2 ×.
move: (@component_of_components G input) ⇒ comp_i.
Iso2 (iso_component comp_i).
Qed.
Lemma CK4F_component (G : graph2) (x : G) :
K4_free (sskeleton G) → CK4F (component1 x).
Proof.
move ⇒ K4F_G. split ⇒ //.
- apply: connected_induced. exact: connected_component_of.
- apply: subgraph_K4_free (sub_pointxx _) _. exact: induced_K4_free.
Qed.
Definition term_of_rec' (t : graph2 → term sym) (G : graph2) :=
if [pick x | (input \notin @component_of G x) && (output \notin @component_of G x)] is Some x
then top · (term_of (component1 x) · top) ∥ t (induced2 (~: component_of x))
else
if output \in @component_of G input
then term_of G
else term_of (@component1 G input) · (top · term_of (@component1 G output)).
Definition term_of' := Fix top (fun G : graph2 ⇒ #|G|) term_of_rec'.
Lemma induced2_compN_small (G : graph2) (x : G) :
input \notin @component_of G x → output \notin @component_of G x →
#|induced2 (~: @component_of G x)| < #|G|.
Proof.
move ⇒ X1 X2. rewrite /= card_sub. apply: proper_card. apply/properP; split ⇒ //.
- exact/subsetP.
- ∃ x ⇒ //. rewrite !inE (@in_component_of G) orbF.
apply/negP ⇒ /orP[] /eqP ?; subst; by rewrite (@in_component_of G) in X1 X2.
Qed.
Lemma term_of_rec_eq' (f g : graph2 → term sym) (G : graph2) :
(∀ H : graph2, #|H| < #|G| → f H = g H) → term_of_rec' f G = term_of_rec' g G.
Proof.
move ⇒ Efg. rewrite /term_of_rec'. case: pickP ⇒ [x /andP [X1 X2]|//].
rewrite Efg //. exact: induced2_compN_small.
Qed.
Lemma term_of_eq' G : term_of' G = term_of_rec' term_of' G.
Proof.
apply Fix_eq with (fun _ ⇒ True) ⇒ // f g x _ H.
by apply: term_of_rec_eq'; auto.
Qed.
Theorem term_of_iso' (G : graph2) :
K4_free (sskeleton G) → G ≃2 graph_of_term (term_of' G).
Proof.
elim/card_ind : G ⇒ G IH K4F_G.
rewrite term_of_eq' /term_of_rec'. case: pickP ⇒ [x /andP [X1 X2]|H].
- rewrite /=. rewrite <- term_of_iso, <- IH.
+ apply: iso2_disconnected_component; by rewrite inE.
+ exact: induced2_compN_small.
+ apply: subgraph_K4_free K4F_G. exact: sskeleton_subgraph_for.
+ exact: CK4F_component.
- case: ifP; last first.
+ move/negbT ⇒ io.
rewrite /=. rewrite <- !term_of_iso; first apply: iso_disconnected_io ⇒ //.
× move ⇒ x. move/(_ x) : H. apply: contraFT. rewrite negb_or.
by rewrite !(@component_exchange G x).
× exact: CK4F_component.
× exact: CK4F_component.
+ move ⇒ E. apply: term_of_iso. split ⇒ //.
apply: connected_one_component (@component_of_components G input) _.
apply/subsetP ⇒ x _. move/(_ x) : H. apply: contraFT ⇒ H.
rewrite !(component_exchange x) H /=. by rewrite (same_component E).
Qed.
Corollary minor_exclusion_2p (G : graph2) :
K4_free (sskeleton G) ↔
∃ (T : forest) (B : T → {set G}), [/\ sdecomp T (sskeleton G) B & width B ≤ 3].
Proof.
split ⇒ [K4F_G|[T [B [B1 B2 B3]]]].
- have [T [B] [B1 B2]] := (graph_of_TW2 (term_of' G)).
have I := term_of_iso' K4F_G. symmetry in I. apply sskel_iso2 in I.
have [D D1 D2] := decomp_iso B1 I.
∃ T. ∃ D. by rewrite D2.
- exact: TW2_K4_free B1 B2 B3.
Qed.
End ExtractionTop.
Remark: contrary to the textbook definition, we do not substract 1
in the definition of treewidth. Consequently, width ≤ 3 means
treewidth two.
Corollary graph_minor_TW2 (G : sgraph) :
K4_free G ↔
∃ (T : forest) (B : T → {set G}), sdecomp T G B ∧ width B ≤ 3.
Proof.
split⇒ [| [T][B][]]; last exact: TW2_K4_free.
case: (posnP #|G|) =>[G_empty | /card_gt0P[x _]].
{ ∃ tunit; ∃ (fun _ ⇒ [set: G]). split; first exact: triv_sdecomp.
apply: leq_trans (width_bound _) _. by rewrite G_empty. }
move⇒HG.
have [G' [iso_G _]] := flesh_out (0 : flat nat) tt x.
apply (iso_K4_free iso_G) in HG.
apply minor_exclusion_2p in HG as (T&B&D&W).
case: (decomp_iso D iso_G) ⇒ B' D' W'.
∃ T. ∃ B'. by rewrite W'.
Qed.
Print Assumptions graph_minor_TW2.