Faites plutôt vacciner vos amis, c’est mathématique

https://www.lemonde.fr/sciences/article/2020/02/05/faites-plutot-vacciner-vos-amis-c-est-mathematique_6028500_1650684.html

Le mathématicien Etienne Ghys évoque les implications que pourrait avoir le « paradoxe de l’amitié » dans les stratégies de lutte contre les pandémies.

Carte blanche. Pour comprendre comment un virus se répand dans une population, la biologie est bien sûr très importante, mais cela ne suffit pas : il faut des mathématiques. Une fois connus un certain nombre de paramètres – le taux de transmission, la durée d’incubation, etc. –, il reste à résoudre des problèmes mathématiques redoutables. Dans le modèle épidémiologique le plus simple, on décompose la population en trois compartiments : les personnes saines, les infectées et les immunisées après la maladie. Les personnes saines peuvent être infectées avec une certaine probabilité lors d’une rencontre avec une personne déjà infectée. Une personne infectée devient immunisée après un certain temps. Cela mène à des équations différentielles relativement simples.

Il est clair que ce modèle (élaboré il y a un siècle) est d’une grande naïveté. Beaucoup d’autres, de plus en plus complexes, ont été imaginés et fonctionnent dans de nombreuses situations. La difficulté majeure est que la plupart de ces modèles reposent sur une hypothèse d’homogénéité de la population, selon laquelle les individus entrent en contact de manière aléatoire et que la probabilité d’infection ne dépend pas des individus qui se rencontrent. Il faudrait décomposer la population en une multitude de compartiments, en tenant compte par exemple de leur âge ou de l’endroit où ils habitent, etc. Cela devient extrêmement compliqué.

Le problème est de comprendre le « réseau des contacts ». Dessinez 7 milliards de points sur une feuille de papier, un par être humain, et joignez 2 points par un trait chaque fois que les 2 individus correspondants se sont rencontrés la semaine dernière. Comme ce « dessin » est impossible à réaliser dans la pratique, on cherche plutôt à décrire ses propriétés globales. Par exemple, on pense qu’il s’agit d’un « petit monde » : deux êtres humains quelconques peuvent être connectés par une suite très courte d’individus telle que chacun est un ami du suivant. On dit même qu’une chaîne de longueur 6 devrait suffire, ce qui peut inquiéter si le virus se transmet entre amis.

Théorie des grands réseaux

A une bien plus petite échelle, un groupe de chercheurs a effectué une expérience dans un lycée aux Etats-Unis : pendant une journée, un millier d’élèves ont porté de petits détecteurs autour du cou, et il a été possible d’obtenir la liste complète de toutes les rencontres entre eux (à moins de trois mètres, pendant au moins une minute). Par la suite, les chercheurs ont pu analyser en détail les propriétés de ce réseau de rencontres puis la manière dont une maladie infectieuse pourrait se propager dans ce lycée.

La théorie des très grands réseaux est actuellement en pleine expansion, en mathématiques comme en informatique. Voici un théorème très simple, mais surprenant : « Une majorité d’individus ont moins d’amis que leurs amis ». Prenons l’exemple suivant : M. X a 100 amis qui ne sont amis qu’avec lui. Alors, parmi ces 101 personnes, toutes, sauf une, n’ont qu’un seul ami, mais leur (unique) ami a 100 amis. Il se trouve que ce phénomène se produit toujours, quelle que soit la nature du réseau de l’amitié.

Comme application, imaginons qu’on ne dispose que d’un petit nombre de vaccins et qu’il s’agisse de choisir les personnes qu’il faudrait vacciner. On pourrait vacciner des personnes choisies aléatoirement, mais une bien meilleure idée consisterait à choisir une personne au hasard et à lui demander de désigner l’un de ses amis, et de vacciner cet ami. Celui-ci, ayant plus d’amis, risquerait de contaminer plus de monde et il serait préférable de le vacciner. Dans l’exemple précédent, c’est M. X.

Le paradoxe de l’amitié va plus loin. Non seulement vos amis ont (en général) plus d’amis que vous, mais on dit qu’ils sont plus heureux que vous !

Les attractions mutuelles de l’abbé Sigorgne

https://www.lemonde.fr/sciences/article/2019/10/16/les-attractions-mutuelles-de-l-abbe-sigorgne_6015724_1650684.html

Cet ecclésiastique, qui popularisa les idées de Newton, est un exemple d’esprit des Lumières qui mérite de sortir de l’oubli, estime le mathématicien Etienne Ghys.

Carte blanche. Vous ne connaissez probablement pas l’abbé Sigorgne. Il a pourtant fait l’objet d’un colloque passionnant les 4 et 5 octobre à Mâcon, regroupant des spécialistes de l’histoire des sciences et de la littérature. Né en 1719 et mort en 1809, à Mâcon, il est difficile de le classer : mathématicien, physicien, écrivain, homme d’Eglise ? Dans notre société faite d’immédiateté, il faut toujours rappeler l’importance des recherches historiques pour mieux comprendre notre monde contemporain, qui doit tant aux Lumières.

Au XVIIIe siècle, la bataille faisait rage entre les Anglais, partisans de la théorie de la gravitation de Newton, et les Français, partisans de la théorie de Descartes. Selon Descartes, l’espace est rempli d’un fluide inconnu, formant des tourbillons de toutes tailles qui entraînent les planètes dans leur course. Selon Newton, l’espace est vide et les corps sont soumis à de mystérieuses forces d’attraction mutuelle qui agissent instantanément, même si les distances qui les séparent sont considérables.

Comme on le sait, les newtoniens emporteront la bataille contre les cartésiens (en attendant l’arrivée d’Einstein avec sa théorie de la relativité générale). Voltaire jouera un rôle important en rédigeant ses merveilleux Eléments de la philosophie de Newton (1738) sur un ton presque journalistique. Newton pénétrera dans la France scientifique grâce aux traductions et aux commentaires d’Emilie du Châtelet. Mais c’est l’abbé Sigorgne qui permit à Newton d’entrer dans l’enseignement universitaire en écrivant ses Institutions newtoniennes en 1747. Bien sûr, Sigorgne n’est pas aussi connu que Condorcet, d’Alembert, Voltaire ou Rousseau, mais l’histoire ne se réduit pas aux célébrités, et il est important de se pencher sur un Mâconnais moins connu qu’Antoine Griezmann.

Réconcilier Descartes et Newton

Notre abbé est un homme des Lumières, ouvert au dialogue. Il échangera une centaine de lettres avec Georges-Louis Le Sage, physicien genevois, qui essaiera de le convaincre qu’il est possible de réconcilier Descartes et Newton. Selon la théorie de Le Sage, l’espace est rempli de particules microscopiques qui pénètrent partiellement les corps en rebondissant sur les atomes. Cela permettait d’expliquer la force de gravitation mystérieuse dont Newton avouait lui-même ne pas comprendre l’origine. Cette belle théorie de Le Sage n’aura cependant aucun succès.

Sigorgne est aussi un enseignant. Plusieurs lettres de Turgot montrent qu’il n’avait pas oublié son professeur et qu’il pouvait discourir sérieusement de l’attraction newtonienne et de la géométrie des ellipses ou des hyperboles. Heureuse époque où les gouvernants connaissaient la géométrie ! En revanche, cinquante ans plus tard, il semble bien que Lamartine n’ait pas vraiment profité de ses cours de mathématiques.

Bien sûr, tout cela se mêle à d’intenses débats théologiques : comment concilier la Raison et la Foi ? L’abbé s’attaque par exemple avec violence aux Lettres écrites de la montagne (1764) de Rousseau, en publiant les Lettres écrites de la plaine ou défense des miracles contre le philosophe de Neuf-Châtel (1766).

Sur la fin de sa vie, Sigorgne juge que les « hauts travaux scientifiques ne conviennent plus à son âge », et rédige un recueil contenant un grand nombre de fables, à la manière de La Fontaine. Le manuscrit a été retrouvé récemment dans les archives de Mâcon. Une historienne de la littérature en a fait une analyse détaillée et a eu une très belle idée : en collaboration avec un professeur des écoles, elle a travaillé quelques-unes de ces fables dans une classe de CM1-CM2 d’un village du voisinage. Un vidéaste a mis tout cela en scène et produit un joli film. Quelle émotion de voir en 2019 des enfants déclamer des textes oubliés, comme en écho au siècle des Lumières !

A Shanghaï, une obsession pour la racine carrée

https://www.lemonde.fr/campus/article/2019/09/03/a-shanghai-une-obsession-pour-la-racine-carree_5505962_4401467.html

Le mathématicien Etienne Ghys revient sur l’étrange formule qui préside à l’établissement du classement de Shanghaï.

Carte blanche. Le fameux classement de Shanghaï des universités a été publié comme chaque année au mois d’août. On apprend que le trio de tête est constitué, comme toujours, de Harvard, Stanford et Cambridge, et que les universités Paris-Sud et de la Sorbonne occupent les 37e et 44e positions. Ce classement est critiqué de toute part, sauf bien sûr par les universités qui sont bien placées. Il est peut-être utile d’expliquer comment il est construit, pour montrer à quel point il n’a guère de sens.

Dans un premier temps, l’ARWU (Academic Ranking of World Universities) évalue cinq « indicateurs » pour chaque université. Il s’agit du nombre de lauréats du prix Nobel ou de la médaille Fields qui y travaillent, du nombre d’anciens étudiants ayant reçu ces mêmes honneurs, du nombre total d’articles publiés, de ceux qui sont publiés dans les deux revues Nature et Science, et enfin du nombre de chercheurs « très cités ».

Chacun de ces indicateurs pose problème. Par exemple, la liste des chercheurs les plus cités recense 90 mathématiciens, dont 16 signent leurs articles… en Arabie saoudite. En revanche, on ne trouve aucun mathématicien français dans cette liste. Sans être chauvin, cela n’a aucun sens.

Bien entendu, ces cinq indicateurs privilégient les gros établissements et ne laissent que peu de chances aux petits, même s’ils sont excellents. Pour essayer de remédier à cela, on utilise un sixième indicateur qui est une espèce de moyenne des précédents, divisée par le nombre total de chercheurs dans l’université.

Comme au décathlon

La cerise sur le gâteau est la formule utilisée pour agréger tout cela et fabriquer un classement global. Le « score » attribué à une université est une moyenne des racines carrées des six indicateurs, affectées de certains coefficients. Vous avez bien lu : il s’agit d’une moyenne des racines carrées. Pour comprendre l’idée, on peut se référer au décathlon. Comment fait-on pour agréger les résultats d’un sportif dans dix disciplines aussi différentes que le saut en hauteur et le lancer de poids ? La solution consiste à commencer par transformer chacune des dix performances d’une certaine façon, spécifique à chaque discipline, avant de calculer des moyennes. Un progrès de 1 cm au saut en hauteur vous fera gagner beaucoup plus de points si vous sautez 2,45 m (record du monde) que si vous ne sautez « que » 1,50 m. Pour une université qui emploie déjà beaucoup de Prix Nobel, il est en revanche plus facile d’en recruter un de plus que pour une université qui n’en a aucun. Afin de tenir compte de ce fait, l’ARWU n’a pas cherché très loin et a décidé de transformer tous les indicateurs de la même manière et d’utiliser la racine carrée.

Il y a au moins deux différences entre les universitaires et les décathloniens. Tout d’abord, il y a eu dans le passé de nombreux débats parmi les sportifs sur ce que doit être une bonne formule. Rien de tel n’a eu lieu parmi les universitaires, et le choix arbitraire de la racine carrée laisse pantois. Par ailleurs, un décathlonien participe à une compétition qu’il a librement choisie et dont il connaît les règles. Ce n’est pas le cas des universités, qui n’ont pas la mission de suivre des règles imposées unilatéralement par un institut chinois qui promeut les racines carrées.

L’ARWU établit aussi des classements mondiaux par disciplines. J’ai bien sûr consulté celui qui concerne les mathématiques. On y apprend que Princeton est première, que la Sorbonne est deuxième, que Paris-Sud est en cinquième position et que le département français de mathématiques qui suit, dans une 27e place très honorable au niveau mondial, est mon laboratoire de l’Ecole normale supérieure de Lyon. Finalement, ces classements ne sont pas si mal…

Ces femmes qui ont compté dans l’ombre

https://www.lemonde.fr/sciences/article/2019/06/05/ces-femmes-qui-ont-compte-dans-l-ombre_5471924_1650684.html

« Carte blanche ». L’un de mes articles scientifiques préférés a été écrit par Edward Lorenz, en 1963, et s’intitule « Deterministic Nonperiodic Flow » (flot déterministe et non périodique). Il s’agit de l’un des textes fondateurs de la théorie du chaos. Son contenu passera dans le grand public un peu plus tard à travers la belle image de l’effet papillon : un battement d’ailes d’un papillon au Brésil pourrait engendrer un ouragan au Texas. Cette publication est un mélange extraordinaire de physique, de météorologie, de mathématiques et de simulations numériques. Je l’ai lue et relue un très grand nombre de fois et je croyais la connaître jusque la semaine dernière.

Un article de Joshua Sokol dans Quanta Magazine m’a appris que j’aurais dû lire le dernier paragraphe dans lequel l’auteur remercie « Miss Ellen Fetter qui a pris en charge les nombreux calculs et les graphiques ». Comment ? Ce n’est pas Edward Lorenz qui a fait les calculs, mais une assistante ? Il faut comprendre que simuler le mouvement de l’atmosphère sur un ordinateur était une composante essentielle de l’article. En 1963, les ordinateurs étaient primitifs et « prendre en charge les calculs » aurait probablement mérité un peu plus qu’un discret remerciement.

Calculs faits à la main

Ce n’est pas la première fois que des scientifiques utilisent des « calculatrices féminines », dont les noms apparaissent au mieux dans les remerciements. Dix ans auparavant, Enrico Fermi, John Pasta et Stanislaw Ulam publiaient la première simulation numérique d’un système physique complexe. On peut considérer cet article comme la naissance d’une nouvelle discipline de physique mathématique. Il s’agissait d’étudier, sur un ordinateur, les vibrations d’une chaîne constituée d’une soixantaine de ressorts « non linéaires ».

Là encore, deux lignes discrètes dans la publication remercient Miss Mary Tsingou pour « la programmation efficace du problème et pour avoir effectué les calculs sur l’ordinateur Maniac de Los Alamos », ce qui représente pourtant une partie très importante du travail. Ce n’est qu’en 2008 que le physicien Thierry Dauxois lira ces deux lignes et proposera d’appeler Fermi-Pasta-Ulam-Tsingou cette simulation numérique. J’aurais même proposé de respecter l’ordre alphabétique…

En remontant encore dans le temps, on arrive à une période où les calculs étaient faits à la main, et où la main en question était bien souvent féminine. Dans les années 1940, un membre d’un institut de mathématiques appliquées ose parler du kilogirl (kilofille) : la quantité de calculs qu’une femme peut produire en mille heures ! Vers 1880, l’astronome Edward Charles Pickering recrute, à Harvard (Massachusetts), une équipe de plus de 80 calculatrices féminines surnommées « harem de Pickering » et payées moins qu’un ouvrier.

On sait que la comète de Halley est visible dans le ciel à peu près tous les soixante-seize ans. Sa trajectoire est perturbée par l’attraction de Jupiter et de Saturne. Au milieu du XVIIIsiècle, certains savants doutaient encore de la théorie de la gravitation de Newton. Le calcul de la date du retour de la comète fut un grand moment de l’histoire des sciences. En novembre 1758, l’académicien Alexis Clairaut annonce un retour « vers le mois d’avril de l’année prochaine ». Ce fut un triomphe quand sa prédiction se réalisa. La théorie est en effet due à Clairaut, mais les calculs monstrueux ont été effectués par Joseph Lalande et Nicole-Reine Lepaute qui « calculaient depuis le matin jusqu’au soir, parfois même à table ». Clairaut « oubliera » de remercier sa collaboratrice. La Ville de Paris rendra partiellement justice à Nicole-Reine, en 2007, en donnant son nom à une rue.

En 2017, l’ingénieur de Google James Damore a été renvoyé après avoir affirmé que le manque d’informaticiennes était d’origine biologique.

Une certaine idée des leçons de mathématiques

https://www.lemonde.fr/sciences/article/2019/04/15/une-certaine-idee-des-lecons-de-mathematiques_5450426_1650684.html

Dans sa chronique, Etienne Ghys nous emmène aux challenges organisés par l’association MATh.en.JEANS, destinés aux élèves de tous les niveaux scolaires. Une belle façon de donner le goût des maths.

« Carte blanche ». La saison 2018-2019 de l’association MATh.en.JEANS se termine. Depuis le mois de mars, dix congrès mathématiques ont eu lieu un peu partout en France, et deux autres se tiendront en mai, à l’étranger. Ces congrès sont très inhabituels : les participants et les conférenciers sont des élèves de tous les niveaux scolaires, du primaire au lycée. En 2018, 4 500 élèves ont participé (dont près de la moitié de filles) et 680 sujets mathématiques ont été discutés dans 300 « ateliers ».

Le principe est le suivant : des enseignants proposent à des élèves (volontaires) de réfléchir sur un thème qui a été suggéré par un chercheur référent. De petits groupes se forment, souvent à cheval sur plusieurs établissements scolaires, et les élèves se réunissent une fois par semaine pour réfléchir ensemble sur leur problème. Le grand moment est celui du congrès au cours duquel les élèves présentent leurs résultats devant leurs camarades, mais aussi devant les professeurs présents dans l’amphithéâtre. Ces moments d’échange sont magiques ; il est tellement rare de voir un élève au tableau expliquer à un professeur ce qu’il a découvert ! Certains de ces exposés sont rédigés et publiés par l’association.

Les thèmes abordés sont étonnamment divers. Parfois, il s’agit de théorie des nombres. Par exemple : si je multiplie tous les nombres entiers de 1 à 1 000, combien y aura-t-il de 0 à la fin du résultat de mon calcul ? D’autres fois, c’est la combinatoire qui est à l’honneur : comment peut-on placer un certain nombre de points dans le plan de telle sorte que la droite qui joint deux quelconques d’entre eux en contienne au moins un autre ? Ou encore : si je place un nombre pair de points dans le plan, peut-on les joindre deux par deux par des segments qui ne se rencontrent pas ?

D’autres thèmes sont beaucoup plus « utiles ». Je me souviens par exemple d’un groupe d’élèves qui ne supportaient plus les longues files d’attente à la cantine à midi. Ils ont cherché à optimiser les horaires en proposant au proviseur de modifier légèrement les heures de cours pour que les élèves ne sortent pas tous à la même heure. L’optimisation n’est pas si simple qu’on pourrait croire. Il y a aussi des groupes qui travaillent sur des tours de magie ou sur des stratégies gagnantes dans une version (très) simplifiée du poker.

Beau comportement exponentiel

L’association a été fondée en 1989 et sa croissance montre un beau comportement exponentiel, un triplement tous les dix ans environ : on devrait dépasser le million d’élèves impliqués dans… cinquante ans ! Toutes les enquêtes montrent une baisse de niveau en mathématiques des élèves français. Faut-il augmenter le nombre d’heures de cours ? Que penser de la future disparition des mathématiques dans le tronc commun en classe de première ? Ne faut-il pas soutenir plus fermement des initiatives comme MATh.en.JEANS en passant à des ordres de grandeur bien supérieurs ?

Pour cela, il faudrait le soutien financier massif de l’éducation nationale, qui est largement insuffisant. Aujourd’hui, 600 enseignants et 200 chercheurs sont impliqués dans l’association, tous volontaires et bénévoles. Il faudrait considérer que ce genre d’activité fait partie intégrante de la formation mathématique des élèves. Le volontariat et le bénévolat ont leurs limites…

C’est l’occasion de faire un peu de publicité. « Le prix André Parent a pour but de valoriser un travail de recherche, encadré ou non, effectué par un groupe de jeunes (primaire, collège ou lycée) pendant cette année scolaire, sur un sujet scientifique dans lequel les mathématiques tiennent une place primordiale. » Le prix sera remis lors du 20e Salon culture et jeux mathématiques, qui se tiendra les 23, 24, 25 et 26 mai, place Saint-Sulpice, à Paris.