Archives de catégorie : Le Monde

Pour appréhender les risques d’un vaccin, écoutons les psychologues

https://www.lemonde.fr/sciences/article/2021/04/26/vaccins-pour-apprehender-les-facteurs-de-risque-il-faut-ecouter-les-medecins-et-les-mathematiciens-mais-aussi-les-psychologues_6078055_1650684.html

Comment comprendre la méfiance de la population à l’encontre du vaccin d’AstraZeneca ? D’un côté, un Français sur 700 est mort du Covid-19 depuis un an. De l’autre, un cas de thrombose pour 100 000 éliminer. Le calcul des probabilités ne suffira pas. Une application pour smartphone, intitulée Risk Navigator, évalue les risques encourus dans des activités usuelles. L’unité de mesure est le « micromort » : une probabilité de 1 sur 1 million de mourir. Ainsi, 1 000 km en voiture coûtent 3 micromorts. Mais les humains ne perçoivent presque jamais les risques en termes de chi#res ou de micromorts. Nous ne sommes heureusement pas des machines à calculer. Nos comportements sont souvent irrationnels, et c’est tant mieux. vaccinations. La balance semble claire : le risque de thrombose est 140 fois inférieur à celui du Covid-19. Et, pourtant, la méfiance s’est installée et sera difficile à éliminer. Le calcul des probabilités ne suffira pas. Une application pour smartphone, intitulée Risk Navigator, évalue les risques

encourus dans des activités usuelles. L’unité de mesure est le « micromort » : une probabilité de 1 sur 1 million de mourir. Ainsi, 1 000 km en voiture coûtent 3 micromorts. Mais les humains ne perçoivent presque jamais les risques en termes de chi#res ou de micromorts. Nous ne sommes heureusement pas des machines à calculer. Nos comportements sont souvent irrationnels, et c’est tant mieux.

Le débat n’est pas nouveau. L’inoculation contre la variole − la transmission volontaire d’une forme atténuée de la maladie – date du XVIII siècle en Europe. Un enfant inoculé avait une « chance » sur 200 de mourir dans le mois qui suivait, mais, s’il survivait, il ne serait pas contaminé pendant toute sa vie, à une époque où 1/8 de la population mourait de la variole. Comment comparer ces fractions 1/200 et 1/8 ? Sont-elles de même nature ? Est-il légitime de risquer de faire mourir quelqu’un pour le protéger d’une maladie qu’il pourrait ne jamais attraper ? Le mathématicien suisse Daniel Bernoulli publia en 1766 un travail remarquable dans lequel il comparait deux populations, selon qu’elles utilisaient l’inoculation ou pas. Grâce aux données statistiques dont il disposait, il montra que, en inoculant tout le monde, certes 1/200 des enfants décédaient rapidement, mais que l’espérance de vie augmentait de trois ans. Il en conclut qu’il fallait inoculer.

La discussion qui a suivi fut passionnante dans ce siècle des Lumières où l’on s’interrogeait sur la valeur de la vie humaine. Le mathématicien D’Alembert était ainsi convaincu des avantages de l’inoculation mais il pensait que ceux-ci « ne sont pas de nature à être appréciés Il opposa beaucoup d’arguments, comme le fait qu’on ne peut pas comparer une mort immédiate avec une autre dans un futur indéterminé. mathématiquement ».

Décisions instinctives

Depuis quelques décennies, les psychologues étudient la manière dont nous percevons les risques. Ils ont décrit et mesuré un grand nombre de biais systématiques. Par exemple, nous acceptons des risques bien plus importants lorsque nous les choisissons (comme prendre sa voiture) que lorsque nous n’y pouvons rien (comme un accident nucléaire). De même, nous minimisons les risques s’ils ne nous menacent que dans un futur indéterminé (comme le tabac). Et nous exagérons un risque dont tous les médias parlent abondamment (comme la thrombose). Ces biais sont universels et on ne peut pas s’en débarrasser avec des cours de mathématiques. Ils font partie de la nature humaine. Même les experts y sont soumis dès qu’ils sortent de leur domaine d’expertise. En revanche, la bonne nouvelle est que ces biais sont maintenant bien compris par les psychologues et qu’on peut les expliquer au public, ce que l’école et les médias ne font malheureusement que très peu. Il ne s’agit pas de faire des calculs mais de comprendre nos comportements et de maîtriser nos prises de risque. Nous prenons la plupart de nos décisions instinctivement, mais lorsque les choses deviennent sérieuses, nous devons apprendre à réfléchir et à analyser nos réactions irrationnelles. Il faut écouter les médecins et les mathématiciens, bien sûr, mais aussi les psychologues. Vous pouvez accepter votre peur incontrôlée des araignées, mais pour les risques qui vous menacent vraiment, prenez le  temps de vous renseigner et de réfléchir avant de prendre une décision !

Le théorème de l’indice, au sommet

Le mathématicien américain Isadore Singer est décédé le 11 février, à l’âge de 96 ans. Avec son collaborateur Michael Atiyah, mort en 2019, il avait démontré le théorème de l’indice, célèbre parmi les mathématiciens, qui leur a valu le prix Abel en 2004. L’importance exceptionnelle de ce théorème est attestée par le fait qu’il établit un lien insoupçonné entre deux parties des mathématiques jusque-là éloignées, l’analyse et la topologie, mais aussi par ses conséquences en physique théorique. On pense souvent, à tort, que le rôle du mathématicien consiste à résoudre des équations. A vrai dire, il y a toutes sortes d’équations. Beaucoup de celles qu’on rencontre en physique mettent en jeu des inconnues qui sont des fonctions plutôt que des nombres. On parle alors d’équations différentielles et leur étude fait partie de l’« analyse mathématique ». Il est rare qu’on sache résoudre ce type d’équation mais le théorème de l’indice permet de compter le nombre de leurs solutions, ce qui est bien souvent suffsant pour les applications. Atiyah et Singer associent à l’équation un objet qu’on appelle un « fibré », dont l’étude fait partie de la topologie, et sur lequel on peut lire directement le nombre de solutions. Un pont est donc établi entre l’analyse et la topologie.

Le théorème a été démontré en 1963 mais Atiyah et Singer n’en ont publié une démonstration qu’en 1968. En fait, ils ont attendu de disposer de trois démonstrations différentes, un peu comme un sommet qu’on atteint par plusieurs voies, chacune apportant une nouvelle perspective. Tout cela n’est pas apparu soudainement dans leur esprit. Pendant plus de vingt ans, ils ont développé leurs idées en s’appuyant sur de nombreux théorèmes antérieurs qui ne semblaient pas reliés. Les progrès les plus importants en mathématiques sont bien souvent des synthèses : des résultats hétéroclites apparaissent tout à coup comme de simples cas particuliers d’une théorie bien plus puissante.

L’externe et l’interne

Quelques années plus tard, le lien avec la physique est apparu clairement. La « théorie de jauge » des physiciens était très proche des « fibrés » des mathématiciens. Le théorème de l’indice devenait un outil crucial en physique quantique. On peut y voir un exemple de la « déraisonnable efficacité des mathématiques dans les sciences de la nature », pour employer une expression célèbre du physicien Eugene Wigner.

Les liens entre la physique et les mathématiques sont vieux comme la science, et les opinions divergent. Le mathématicien Vladimir Arnold affirmait que les mathématiques ne sont qu’un chapitre de la physique. D’autres insistent au contraire sur l’importance des mathématiques comme discipline abstraite et autonome. Le point de vue d’Atiyah et Singer est intermédiaire. Selon eux, presque toutes les mathématiques sont nées de la réalité extérieure, par exemple ce qui concerne les nombres, mais elles se sont tournées ensuite vers des questions internes, comme la théorie des nombres premiers. D’autres parties des mathématiques sont en revanche plus proches du monde extérieur et la physique y joue un rôle crucial de motivation. La force des mathématiques réside dans ces deux composantes complémentaires : externe et interne. En 1900, David Hilbert affirmait qu’« une théorie mathématique ne peut être considérée comme complète que si elle est si claire que vous pouvez l’expliquer à la première personne que vous rencontrez dans la rue ». Hélas, il faudra attendre encore un peu avant de pouvoir expliquer clairement le théorème de l’indice aux lecteurs du Monde !

L’efficacité vaccinale en quatre notions

https://www.lemonde.fr/sciences/article/2021/01/06/covid-19-l-efficacite-vaccinale-en-quatre-notions-distinctes_6065332_1650684.html

L’efficacité du vaccin Pfizer est estimée à 95 %. Cela signifie-t-il, comme on l’entend parfois, que, sur cent personnes vaccinées, cinq seront malades du Covid ? Ce n’est heureusement pas de cette façon qu’il faut comprendre ce chiffre. Quelques définitions sont peut-être utiles pour éviter de tels malentendus. Dans le monde entier, le laboratoire a sélectionné 43 000 volontaires. Une moitié d’entre eux, choisie au hasard, a été vaccinée. L’autre moitié a été « vaccinée » avec un placebo : de l’eau salée. Les volontaires ne pouvaient pas savoir s’ils avaient été vraiment vaccinés. On a ensuite attendu que 170 d’entre eux ressentent des symptômes du Covid et que les résultats de leur test se révèlent positifs. Parmi eux, huit avaient été vaccinés et 162 avaient reçu le placebo. Ainsi, les malades vaccinés étaient vingt fois moins nombreux que ceux qui ne l’étaient pas. Le risque d’être malade si on est vacciné est donc de 5 % du risque qu’on court si on n’est pas vacciné. Autrement dit, le risque de maladie a été diminué de 95 %, ce qu’on exprime en disant que l’efficacité clinique est de 95 %. Cet essai clinique doit être réalisé avant la mise en circulation du vaccin, car une efficacité supérieure à 50 % est indispensable pour obtenir l’autorisation de mise sur le marché : 95 % est donc un très bon score.

L’efficacité dans la vie réelle nous intéresse bien plus : il s’agit maintenant de connaître la diminution du risque de maladie dans le monde réel pour une personne vaccinée. C’est assez différent d’un essai clinique, qui mesure surtout un degré de protection individuel. L’efficacité réelle dépend du nombre de personnes vaccinées dans la population : plus elles sont nombreuses, moins le virus circule, et moins il y aura de contaminations et donc de malades. Par ailleurs, la durée de la protection apportée par le vaccin, encore mal connue, est très importante dans la réalité, alors qu’elle n’intervient que peu dans l’essai clinique, qui dure peu de temps. L’efficacité réelle ne peut s’évaluer qu’après la mise en circulation du vaccin, grâce à des enquêtes épidémiologiques délicates : il faudra du temps pour la connaître dans le cas des vaccins anti-Covid.

Des bénéfices pour tous

Il faut encore ajouter deux autres sortes d’efficacité. N’oublions pas que la vaccination est avant tout une mesure de santé publique, qui ne vise pas seulement à limiter le risque de maladie pour l’individu vacciné, mais aussi pour toute la société, dont une proportion importante n’est pas vaccinée (parfois d’ailleurs pour de bonnes raisons). On peut alors estimer l’efficacité indirecte, c’est-à-dire la diminution du risque dont les individus non vaccinés bénéficient grâce à ceux qui sont vaccinés et qui ne les contaminent pas. Enfin, il y a l’efficacité globale, peut-être la plus importante et la plus difficile à estimer : la diminution du risque moyen dans la population totale (vaccinée ou pas) par rapport à ce que serait ce risque si personne n’était vacciné. Voilà donc quatre notions différentes d’efficacité.

Dans tous les cas, les vaccins contre le Covid seront extrêmement utiles même si leur efficacité globale sera probablement inférieure à 95 %. Même une valeur de 50 % permettrait d’éviter la moitié des maladies, entraînerait une diminution considérable de la circulation du virus dans la population et sauverait un grand nombre de vies.

Comme toujours, il faut faire attention avec les chiffres. Imaginons que, dans une population, il y ait dix fois plus de vaccinés que de non-vaccinés. Imaginons que le risque de maladie pour un vacciné soit cinq fois moins important que pour un non-vacciné. Comme les vaccinés sont dix fois plus nombreux, le nombre de malades vaccinés sera le double de celui des non-vaccinés. N’en déduisons surtout pas que la vaccination est inefficace.

N’hésitez pas ! Dès que vous en aurez la possibilité, vaccinez-vous !

Etienne Ghys

Pour départager deux candidats, vive la majorité simple !

Dans sa carte blanche, le mathématicien Etienne Ghys revient sur les différentes manières, des plus aux moins équitables, d’élire un représentant parmi deux concurrents.

https://www.lemonde.fr/sciences/article/2020/11/18/pour-departager-deux-candidats-vive-la-majorite-simple_6060148_1650684.html

Carte blanche. Les mathématiques peuvent-elles jeter un peu de lumière sur le feuilleton à rebondissements des élections américaines ? Imaginons une population qui vote pour deux candidats et supposons que les électeurs choisissent l’un ou l’autre à pile ou face. A l’issue du scrutin, on compte les bulletins et le candidat qui a le plus de voix est élu. Supposons maintenant que, lors du dépouillement, les scrutateurs font quelques erreurs (ou fraudent), par exemple en se trompant une fois sur 10 000. Quelle est la probabilité que ces petites erreurs faussent le résultat global et que l’autre candidat soit élu ? Il se trouve que cette probabilité est de l’ordre de 6 sur 1000 (pour les curieux, il s’agit de 2/π fois la racine carrée de 1/10 000). Est-ce un risque acceptable dans une démocratie ?

Les élections américaines sont à deux niveaux. Chaque Etat élit ses représentants à la majorité et ceux-ci élisent à leur tour le président. En supposant encore une erreur de lecture une fois sur 10 000 (ce qui est raisonnable quand on voit les bulletins de vote américains), quelle est la probabilité de fausser le résultat final ? L’existence de ce deuxième niveau fait que la probabilité est bien pire : une élection sur 20 serait faussée ! C’est beaucoup trop.

La « sensibilité au bruit »

Bien entendu, tout cela dépend d’hypothèses bien peu réalistes et n’accrédite en rien les allégations de fraude de Donald Trump ! Supposer que les électeurs choisissent à pile ou face n’a évidemment aucun sens, même si on peut être stupéfait par la quasi-égalité des résultats en Géorgie par exemple. Cela illustre cependant un phénomène mis en évidence par les mathématiciens il y a une vingtaine d’années : la « sensibilité au bruit » de divers processus de décision, qui vont bien au-delà des élections. Cela concerne tout à la fois l’informatique, la combinatoire, la physique statistique, ou les sciences sociales. Lorsqu’un grand nombre « d’agents », qui peuvent être des êtres humains ou des neurones par exemple, ont des « opinions », quels sont les bons processus qui permettent de prendre une décision globale de manière stable ? Cette stabilité signifie que l’on souhaite que la décision soit aussi insensible que possible au bruit, c’est-à-dire aux petites erreurs que l’on ne contrôle pas.

On peut imaginer beaucoup de processus électoraux. Par exemple, chaque quartier pourrait élire son représentant qui élirait ensuite le représentant de la ville, qui élirait son représentant dans le canton, puis le département, etc. Il s’agirait en quelque sorte d’un tournoi sportif, par étapes successives, un peu comme les élections américaines mais avec beaucoup plus de niveaux. Il se trouve que cette méthode est extrêmement sensible au bruit, et il faut absolument l’éviter. La moindre proportion d’erreurs dans le dépouillement entraînerait une très grande probabilité de se tromper sur le résultat final. C’est inacceptable pour un vote mais cela fait partie du charme des tournois sportifs : ce n’est pas toujours le meilleur qui gagne et c’est tant mieux.

Quelle est alors la meilleure méthode, celle qui est la plus stable ? La réponse est un peu désolante et montre que la question est mal posée. Il suffit de demander à un dictateur de décider seul. Cette « méthode » est en effet très stable car, pour changer le résultat, il faut une erreur sur le seul bulletin qui compte, ce qui arrive une fois sur 10 000. Il faut donc reformuler la question en cherchant parmi les méthodes équitables qui donnent le même pouvoir à tous les électeurs. Il y a une dizaine d’années, trois mathématiciens ont démontré dans ce cadre un théorème difficile qui n’est au bout du compte que du bon sens. Pour départager deux candidats, le vote à la majorité simple est la méthode la plus stable de toutes, parmi celles qui sont équitables. Vive la majorité !


Quelques références :

http://www.mit.edu/~izadik/files/Essay.pdf

https://arxiv.org/pdf/math/0412377.pdf

https://gilkalai.files.wordpress.com/2018/01/18-kalaix-7.pdf


Vaughan Jones, faiseur de nœuds et mathématicien ultracréatif

https://www.lemonde.fr/sciences/article/2020/09/30/vaughan-jones-faiseur-de-n-uds-et-mathematicien-ultracreatif_6054222_1650684.html


Lauréat de la médaille Fields en 1990, le Néo-Zélandais est décédé le 6 septembre 2020. Etienne Ghys lui rend hommage dans sa chronique au « Monde ».

Carte blanche. Le mathématicien Vaughan Jones est décédé le 6 septembre 2020 dans le Tennessee, aux Etats-Unis. Il avait reçu la médaille Fields à Kyoto en 1990. Il arrive parfois qu’un mathématicien établisse des ponts entre des domaines qu’on croyait totalement indépendants. Ce sont des moments de grâce dans le développement des mathématiques, réservés aux plus créatifs, comme Vaughan. Il ne faudrait pas croire cependant qu’il s’agisse d’eurêka ! qui surgissent tout à coup. Il faut presque toujours une longue maturation, peu compatible avec l’exigence d’immédiateté de notre système universitaire actuel. L’université de Genève a permis à Vaughan Jones de s’épanouir et de donner le meilleur de lui-même.

Vaughan arrive en Suisse en 1974 en provenance de Nouvelle-Zélande pour faire un doctorat en physique. Un jour, sa thèse presque achevée, il passe la porte du département de mathématiques et est fasciné par le cours d’André Haefliger : il abandonne la physique pour se lancer dans une thèse de mathématiques (même si, bien sûr, sa formation de physicien restera fondamentale). Il travaille sur les « algèbres de von Neumann », un domaine tellement abstrait que les espaces qu’on y étudie ont des dimensions qui ne sont pas des nombres entiers. Imaginez par exemple un espace dont la dimension est 3,14… ! Haefliger – son directeur de thèse – n’est pas spécialiste de ce sujet, ce qui est un signe de la grande originalité de l’étudiant et de l’ouverture d’esprit de son maître.

Le Suisse Pierre de la Harpe, qui connaît bien le sujet, deviendra un ami et un « grand frère mathématique » de Vaughan. A cette époque, le petit département de Genève était un bouillon de culture animé par quelques mathématiciens seniors exceptionnels qui luttaient contre toute forme de spécialisation exagérée. On y parlait beaucoup d’algèbre, de géométrie et d’analyse, très souvent dans le petit bistro italien au rez-de-chaussée. Le jour de la soutenance de Vaughan, en 1979, il était vêtu d’un smoking, ce qui contrastait avec la manière dont le jury était habillé. En 1990, lors de la cérémonie de remise de la médaille Fields, en présence d’autorités japonaises très formelles, il avait tenu en revanche à revêtir le maillot des All Blacks, par attachement à son origine néo-zélandaise.

Sidération des spécialiste

Après sa thèse, il s’établit aux Etats-Unis mais il repasse souvent à Genève. Un jour, après un de ses exposés, quelqu’un lui fait remarquer, peut-être au bistro italien, une analogie entre une relation qu’il a écrite au tableau et ce qu’on appelle le « groupe de tresses », que Vaughan ne connaissait pas. Il n’en fallait pas plus pour entrevoir un lien entre le sujet de sa thèse et un thème nouveau pour lui : la théorie des nœuds. Tout cela aboutira à une découverte majeure en 1984 : le « polynôme de Jones » associé à un nœud. Les nœuds, en mathématiques, sont ceux qu’on imagine, comme ceux des marins. La théorie mathématique des nœuds date du XIXe siècle et n’avait a priori rien à voir avec les algèbres de von Neumann. L’annonce par Vaughan d’une application importante de ces algèbres dans le domaine des nœuds engendrera une espèce de sidération parmi les spécialistes de la topologie. Il reçut la médaille Fields mais il fut aussi élu vice-président à vie de la Guilde internationale des faiseurs de nœuds, ce dont il était très fier.

La suite de sa carrière a été admirable. Depuis une vingtaine d’années, l’Ecole normale supérieure de Lyon organise un week-end mathématique regroupant une cinquantaine d’étudiants et un mathématicien expérimenté. En 2012, Vaughan Jones avait littéralement charmé les jeunes étudiants. Nous avons non seulement perdu un mathématicien brillant, mais aussi un modèle de générosité et d’ouverture pour la jeunesse

La pandémie de Covid-19 annonce-t-elle la fin du concept de laboratoire de mathématiques ?

https://www.lemonde.fr/sciences/article/2020/07/01/la-pandemie-de-covid-19-annonce-t-elle-la-fin-du-concept-de-laboratoire-de-mathematiques_6044863_1650684.html


Dans sa chronique au « Monde », le mathématicien Etienne Ghys constate que le confinement a brutalement accéléré, avec les téléconférences imposées, un processus de réduction des interactions physiques entre chercheurs.

Carte blanche. Les mois de confinement que nous venons de vivre vont probablement modifier de manière durable les modes de travail des chercheurs scientifiques, y compris ceux qui n’ont aucun rapport avec la biologie. Les mathématiciens, par exemple, n’utilisent pas de matériel expérimental, et leur présence physique au laboratoire peut ne pas sembler indispensable.Ils ont été parmi ceux pour lesquels le télétravail a été le plus facile à mettre en place.

Le site Researchseminars.org recense 739 exposés de mathématiques auxquels on peut participer par Internet, en pouvant interagir en direct avec les conférenciers, sur tous les sujets, à toute heure du jour et de la nuit, en profitant du décalage horaire. Cela ouvre des possibilités inédites de communication entre les chercheurs et accélère brutalement un processus qui évoluait lentement. On ignore les conséquences que cela aura sur la vie sociale de la communauté mathématique.

Les mathématiciens travaillent seuls, le plus souvent, mais ils ont bien entendu besoin d’échanger leurs idées avec d’autres collègues. Depuis un siècle, un outil majeur de communication est le séminaire de laboratoire. Il s’agit de réunions, en général hebdomadaires, pendant lesquelles on présente un nouveau résultat aux membres d’une équipe. En France, le premier séminaire a été créé en 1920 par Jacques Hadamard, professeur au collège de France. En début d’année universitaire, il invitait quelques mathématiciens chez lui et leur distribuait des articles de recherche récemment publiés qu’il fallait étudier. Il élaborait alors un programme annuel.

Le séminaire, une messe dominicale

A l’époque, le séminaire Hadamard était unique en France, mais aujourd’hui, toutes les équipes dans les laboratoires de mathématiques sont organisées autour de leurs séminaires. Leur rôle va bien au-delà de la transmission de connaissance : ce sont des événements sociaux qui soudent les équipes. On les compare parfois à la messe dominicale. Il arrive qu’on y participe par obligation, ou pour voir les amis et les collègues. Il faut dire qu’il n’est pas toujours facile de suivre une conférence de mathématiques et qu’on est souvent perdu, parfois dès les premières phrases.

Depuis une vingtaine d’années, Internet a, bien sûr, fait évoluer ces modes de communication. Tout d’abord, l’intégralité des journaux scientifiques est aujourd’hui accessible en ligne. Jadis, les mathématiciens se rendaient dans leur laboratoire pour être proches de leur bibliothèque, qui était leur véritable instrument de travail. C’est toujours le cas, mais les bibliothèques sont devenues virtuelles. Le courrier électronique, dont on abuse, a remplacé les lettres qu’on écrivait soigneusement en réfléchissant à chaque mot. Il n’est pas rare de voir des chercheurs, un casque sur la tête, en train de collaborer par Skype avec quelqu’un à l’autre bout de la planète, et oubliant d’aller discuter avec leurs collègues proches dans la salle commune du laboratoire.

Cette évolution progressive a bien entendu de grands avantages, mais aussi des inconvénients évidents. Les séminaires hebdomadaires « en présentiel » subsistaient cependant et permettaient de préserver le lien humain à l’intérieur des équipes. La pandémie a accéléré soudainement cette évolution : les séminaires ont dû se réunir par visioconférence, et il n’était plus nécessaire que les participants soient des membres d’un même laboratoire. Des listes de « web-séminaires mondiaux » sont apparues, proposant des quantités impressionnantes de conférences en direct, toutes plus alléchantes les unes que les autres. Cette évolution est probablement irréversible. Annonce-t-elle la fin du concept de laboratoire de mathématiques ? Ce serait dommage.

Cet été je vais participer à un colloque en Russie… sans sortir de chez moi.

La théorie de la percolation ou l’art de modéliser une pandémie

https://www.lemonde.fr/sciences/article/2020/05/12/la-theorie-de-la-percolation-ou-l-art-de-modeliser-d-une-pandemie_6039452_1650684.html


Le mathématicien Etienne Ghys détaille la théorie établie par deux chercheurs britanniques en 1957 pour comprendre la propagation d’un fluide dans un milieu aléatoire. Comme toute modélisation, elle nécessite de jongler avec pas mal d’inconnues.

Carte blanche. De nombreux articles ont décrit le développement d’une épidémie au cours du temps, avec une croissance exponentielle du nombre de nouveaux cas au début, puis le fameux pic, et enfin la décroissance tant attendue. On a moins discuté de la contagion à travers un territoire.

La théorie mathématique de la percolation s’intéresse à ce genre de problème. Le mot vient du latin percolatio signifiant « filtration » et il évoque bien sûr le percolateur à café : l’eau bouillante sous pression trouve son chemin à travers les particules de café moulu, comme un virus trouve son chemin dans une population.

La théorie est née en 1957 dans un article de deux chercheurs britanniques, John Michael Hammersley et Simon Ralph Broadbent. Leur motivation initiale concernait les masques respiratoires dont on parle tant en ce moment. Dans leur cas, il s’agissait des masques de protection pour les mineurs de charbon. Le filtre poreux est assimilé à un réseau régulier de tubes très fins interconnectés dont un certain nombre sont bouchés, de manière aléatoire, et il s’agit de comprendre si un gaz peut traverser un tel labyrinthe.

Déterminer la probabilité critique

Plus généralement, ces chercheurs étudient la propagation d’un fluide dans un milieu aléatoire. L’un de leurs exemples est un modèle très simple d’épidémie. Il s’agit d’un verger immense, dans lequel des arbres fruitiers sont plantés régulièrement en formant un réseau carré. On suppose qu’à un certain moment l’un des arbres est atteint d’une maladie qu’il peut potentiellement transmettre à ses voisins. Chaque arbre malade peut contaminer chacun de ses quatre voisins avec une certaine probabilité p (d’autant plus faible que les arbres respectent la « distanciation sociale »).

Comment l’épidémie va-t-elle se propager ? Hammersley et Broadbent démontrent que si p ne dépasse pas une certaine valeur critique, l’épidémie reste localisée : ce sont les clusters dans lesquels la contamination n’atteint qu’un petit groupe d’arbres. Lorsqu’on dépasse cette valeur critique, la maladie envahit brusquement une grande partie du verger (infinie si le verger est infini) et c’est la pandémie.

Bien entendu, ce théorème n’a d’intérêt que si l’on peut déterminer cette probabilité critique. Des simulations numériques suggéraient que la transition cluster-pandémie se passe pour p = 0,5, et il a fallu attendre 1980 pour que cela soit rigoureusement établi. Hélas, on ne connaît ce genre de résultat précis que dans des cas très simples, comme celui du verger régulièrement planté. Dès que les arbres sont plus ou moins dans le désordre, on comprend moins bien le phénomène.

Informations très partielles

Dans le cas qui nous intéresse, les arbres sont des individus en chair et en os qui ne sont heureusement pas plantés régulièrement et qui se déplacent. De plus, le nombre de contacts d’un individu, c’est-à-dire le nombre de personnes qu’il rencontre dans une journée, et qu’il peut potentiellement contaminer, est extrêmement variable d’un individu à l’autre. Cela dépend de l’endroit où il habite, de son âge, et de bien d’autres paramètres.

On ne dispose que d’informations très partielles sur les statistiques de ces contacts. Enfin, un dernier problème se présente : lorsqu’un malade rencontre une personne saine, la probabilité de contamination est également variable, et mal connue.

Pour bien faire, il faudrait connaître précisément un grand nombre de paramètres dont beaucoup sont inaccessibles. Le modélisateur doit sélectionner un petit nombre d’entre eux qui lui semblent les plus pertinents, et dont il a une connaissance raisonnable. Il lui faut alors déterminer si les autres paramètres – qu’il connaît mal – pourraient avoir une influence importante sur le résultat de ses prévisions. Ce n’est pas facile. La modélisation mathématique est tout un art.

Epidémies : aplatir les exponentielles

https://www.lemonde.fr/sciences/article/2020/03/25/epidemies-aplatir-les-exponentielles_6034339_1650684.html

Carte blanche. Ces derniers jours auront au moins permis aux Français de comprendre dans leur chair ce qu’est une exponentielle. Nous avons tous pris conscience que les puissances de 2 croissent vraiment vite : 1, 2, 4, 8, 16, 32, 64, etc., pour dépasser le milliard en à peine 30 étapes. On sait moins que, si le nombre de nouvelles infections dans une épidémie double tous les trois jours, la moitié des personnes infectées depuis le début de l’épidémie l’ont été depuis moins de trois jours. La fonction exponentielle a des aspects terrifiants.

Le premier scientifique qui a mis en évidence ce type de croissance est Leonhard Euler, en 1760, dans un article important intitulé « Recherches générales sur la mortalité et la multiplication du genre humain ». En 1798, Thomas Malthus comprend que la croissance exponentielle est une menace pour l’humanité. Heureusement, en 1840, Pierre-François Verhulst découvre la « croissance logistique », qui permet de comprendre pourquoi les exponentielles doivent finir par se calmer. Il s’agit de la courbe qui fut présentée si clairement sur un plateau de télévision par notre ministre de la santé.

Dans une croissance purement exponentielle, le nombre de nouveaux cas de contamination est proportionnel au nombre de personnes contaminées. En formule, la dérivée y’ du nombre de cas y est proportionnelle à y, ce qui se traduit par une équation diaboliquement simple y’ = ay, dont la solution exponentielle y = exp (at) rappelle peut-être des souvenirs au lecteur. Le coefficient « a » dépend du nombre moyen de contacts que nous avons : plus il est grand et plus l’exponentielle explose rapidement.

Courbe en cloche

Dans une croissance logistique, le nombre de nouveaux cas de contamination est proportionnel au nombre de personnes déjà contaminées, mais aussi au nombre de personnes contaminables, c’est-à-dire qui n’ont pas déjà été contaminées. Heureusement, le nombre de personnes contaminables diminue au fur et à mesure de l’épidémie, et l’évolution s’infléchit.

En formule, y’ = ay (1-y/b)b désigne la population totale. Dans ce modèle, le nombre de nouveaux cas suit la courbe en cloche dessinée par le ministre. Une croissance exponentielle au début (quand le nombre de cas est encore petit), puis un maximum, et enfin une décroissance. Le seul paramètre sur lequel nous pouvons agir est ce coefficient « a » qui semble anodin, lié au nombre moyen de nos contacts. Lorsqu’on diminue « a », la courbe garde la même allure, mais elle s’aplatit. Certes le pic arrive plus tard, mais il sera moins haut. L’épidémie dure plus longtemps, mais elle est moins meurtrière. Voilà pourquoi il faut rester chez soi !

Au XVIIIe siècle, on se posait la question de l’intérêt de l’inoculation pour lutter contre la variole, qui avait décimé près de la moitié des Européens. Il s’agissait d’une version très primitive de la vaccination, mais qui présentait des dangers pour les patients inoculés (contrairement à la vaccination). Le mathématicien Daniel Bernoulli écrira un article intitulé « Essai d’une nouvelle analyse de la mortalité causée par la petite vérole, et des avantages de l’inoculation pour la prévenir » qui démontre mathématiquement que l’inoculation est bénéfique. Hélas, il ne sera pas écouté.

Quelques années plus tard, l’article « Inoculation » de l’encyclopédie de Diderot et d’Alembert affirmera : « Quand il s’agit du bien public, il est du devoir de la partie pensante de la nation d’éclairer ceux qui sont susceptibles de lumière, et d’entraîner par le poids de l’autorité cette foule sur qui l’évidence n’a point de prise. »

C’est peut-être vrai, mais c’est encore plus vrai quand « la partie pensante » explique clairement ses choix en traçant une courbe sur un plateau de télévision.

Faites plutôt vacciner vos amis, c’est mathématique

https://www.lemonde.fr/sciences/article/2020/02/05/faites-plutot-vacciner-vos-amis-c-est-mathematique_6028500_1650684.html

Le mathématicien Etienne Ghys évoque les implications que pourrait avoir le « paradoxe de l’amitié » dans les stratégies de lutte contre les pandémies.

Carte blanche. Pour comprendre comment un virus se répand dans une population, la biologie est bien sûr très importante, mais cela ne suffit pas : il faut des mathématiques. Une fois connus un certain nombre de paramètres – le taux de transmission, la durée d’incubation, etc. –, il reste à résoudre des problèmes mathématiques redoutables. Dans le modèle épidémiologique le plus simple, on décompose la population en trois compartiments : les personnes saines, les infectées et les immunisées après la maladie. Les personnes saines peuvent être infectées avec une certaine probabilité lors d’une rencontre avec une personne déjà infectée. Une personne infectée devient immunisée après un certain temps. Cela mène à des équations différentielles relativement simples.

Il est clair que ce modèle (élaboré il y a un siècle) est d’une grande naïveté. Beaucoup d’autres, de plus en plus complexes, ont été imaginés et fonctionnent dans de nombreuses situations. La difficulté majeure est que la plupart de ces modèles reposent sur une hypothèse d’homogénéité de la population, selon laquelle les individus entrent en contact de manière aléatoire et que la probabilité d’infection ne dépend pas des individus qui se rencontrent. Il faudrait décomposer la population en une multitude de compartiments, en tenant compte par exemple de leur âge ou de l’endroit où ils habitent, etc. Cela devient extrêmement compliqué.

Le problème est de comprendre le « réseau des contacts ». Dessinez 7 milliards de points sur une feuille de papier, un par être humain, et joignez 2 points par un trait chaque fois que les 2 individus correspondants se sont rencontrés la semaine dernière. Comme ce « dessin » est impossible à réaliser dans la pratique, on cherche plutôt à décrire ses propriétés globales. Par exemple, on pense qu’il s’agit d’un « petit monde » : deux êtres humains quelconques peuvent être connectés par une suite très courte d’individus telle que chacun est un ami du suivant. On dit même qu’une chaîne de longueur 6 devrait suffire, ce qui peut inquiéter si le virus se transmet entre amis.

Théorie des grands réseaux

A une bien plus petite échelle, un groupe de chercheurs a effectué une expérience dans un lycée aux Etats-Unis : pendant une journée, un millier d’élèves ont porté de petits détecteurs autour du cou, et il a été possible d’obtenir la liste complète de toutes les rencontres entre eux (à moins de trois mètres, pendant au moins une minute). Par la suite, les chercheurs ont pu analyser en détail les propriétés de ce réseau de rencontres puis la manière dont une maladie infectieuse pourrait se propager dans ce lycée.

La théorie des très grands réseaux est actuellement en pleine expansion, en mathématiques comme en informatique. Voici un théorème très simple, mais surprenant : « Une majorité d’individus ont moins d’amis que leurs amis ». Prenons l’exemple suivant : M. X a 100 amis qui ne sont amis qu’avec lui. Alors, parmi ces 101 personnes, toutes, sauf une, n’ont qu’un seul ami, mais leur (unique) ami a 100 amis. Il se trouve que ce phénomène se produit toujours, quelle que soit la nature du réseau de l’amitié.

Comme application, imaginons qu’on ne dispose que d’un petit nombre de vaccins et qu’il s’agisse de choisir les personnes qu’il faudrait vacciner. On pourrait vacciner des personnes choisies aléatoirement, mais une bien meilleure idée consisterait à choisir une personne au hasard et à lui demander de désigner l’un de ses amis, et de vacciner cet ami. Celui-ci, ayant plus d’amis, risquerait de contaminer plus de monde et il serait préférable de le vacciner. Dans l’exemple précédent, c’est M. X.

Le paradoxe de l’amitié va plus loin. Non seulement vos amis ont (en général) plus d’amis que vous, mais on dit qu’ils sont plus heureux que vous !

Les attractions mutuelles de l’abbé Sigorgne

https://www.lemonde.fr/sciences/article/2019/10/16/les-attractions-mutuelles-de-l-abbe-sigorgne_6015724_1650684.html

Cet ecclésiastique, qui popularisa les idées de Newton, est un exemple d’esprit des Lumières qui mérite de sortir de l’oubli, estime le mathématicien Etienne Ghys.

Carte blanche. Vous ne connaissez probablement pas l’abbé Sigorgne. Il a pourtant fait l’objet d’un colloque passionnant les 4 et 5 octobre à Mâcon, regroupant des spécialistes de l’histoire des sciences et de la littérature. Né en 1719 et mort en 1809, à Mâcon, il est difficile de le classer : mathématicien, physicien, écrivain, homme d’Eglise ? Dans notre société faite d’immédiateté, il faut toujours rappeler l’importance des recherches historiques pour mieux comprendre notre monde contemporain, qui doit tant aux Lumières.

Au XVIIIe siècle, la bataille faisait rage entre les Anglais, partisans de la théorie de la gravitation de Newton, et les Français, partisans de la théorie de Descartes. Selon Descartes, l’espace est rempli d’un fluide inconnu, formant des tourbillons de toutes tailles qui entraînent les planètes dans leur course. Selon Newton, l’espace est vide et les corps sont soumis à de mystérieuses forces d’attraction mutuelle qui agissent instantanément, même si les distances qui les séparent sont considérables.

Comme on le sait, les newtoniens emporteront la bataille contre les cartésiens (en attendant l’arrivée d’Einstein avec sa théorie de la relativité générale). Voltaire jouera un rôle important en rédigeant ses merveilleux Eléments de la philosophie de Newton (1738) sur un ton presque journalistique. Newton pénétrera dans la France scientifique grâce aux traductions et aux commentaires d’Emilie du Châtelet. Mais c’est l’abbé Sigorgne qui permit à Newton d’entrer dans l’enseignement universitaire en écrivant ses Institutions newtoniennes en 1747. Bien sûr, Sigorgne n’est pas aussi connu que Condorcet, d’Alembert, Voltaire ou Rousseau, mais l’histoire ne se réduit pas aux célébrités, et il est important de se pencher sur un Mâconnais moins connu qu’Antoine Griezmann.

Réconcilier Descartes et Newton

Notre abbé est un homme des Lumières, ouvert au dialogue. Il échangera une centaine de lettres avec Georges-Louis Le Sage, physicien genevois, qui essaiera de le convaincre qu’il est possible de réconcilier Descartes et Newton. Selon la théorie de Le Sage, l’espace est rempli de particules microscopiques qui pénètrent partiellement les corps en rebondissant sur les atomes. Cela permettait d’expliquer la force de gravitation mystérieuse dont Newton avouait lui-même ne pas comprendre l’origine. Cette belle théorie de Le Sage n’aura cependant aucun succès.

Sigorgne est aussi un enseignant. Plusieurs lettres de Turgot montrent qu’il n’avait pas oublié son professeur et qu’il pouvait discourir sérieusement de l’attraction newtonienne et de la géométrie des ellipses ou des hyperboles. Heureuse époque où les gouvernants connaissaient la géométrie ! En revanche, cinquante ans plus tard, il semble bien que Lamartine n’ait pas vraiment profité de ses cours de mathématiques.

Bien sûr, tout cela se mêle à d’intenses débats théologiques : comment concilier la Raison et la Foi ? L’abbé s’attaque par exemple avec violence aux Lettres écrites de la montagne (1764) de Rousseau, en publiant les Lettres écrites de la plaine ou défense des miracles contre le philosophe de Neuf-Châtel (1766).

Sur la fin de sa vie, Sigorgne juge que les « hauts travaux scientifiques ne conviennent plus à son âge », et rédige un recueil contenant un grand nombre de fables, à la manière de La Fontaine. Le manuscrit a été retrouvé récemment dans les archives de Mâcon. Une historienne de la littérature en a fait une analyse détaillée et a eu une très belle idée : en collaboration avec un professeur des écoles, elle a travaillé quelques-unes de ces fables dans une classe de CM1-CM2 d’un village du voisinage. Un vidéaste a mis tout cela en scène et produit un joli film. Quelle émotion de voir en 2019 des enfants déclamer des textes oubliés, comme en écho au siècle des Lumières !