Exercise sheet 2: Construction and first properties of the Brownian motion.

Exercise 1 — Transformations.

Let $(B_t)_{t>0}$ be a Brownian motion.

- (1) Show that for any $\lambda \in \mathbb{R}_+^*$, the process $(\lambda^{-1/2}B_{\lambda t})_{t>0}$ is a Brownian motion.
- (2) Show that $B_1 B_{1-t}$ is a Brownian motion on [0, 1].
- (3) Show that if we set $X_t = tB_{1/t}$ for t > 0 and $X_0 = 0$, then $(X_t)_{t \ge 0}$ is a Brownian motion, as long as one allows oneself to redefine this stochastic process on a negligible event.

Exercise 2 — Constructing a Brownian motion indexed by $\mathbb{R}+$.

Let $(B^{(n)})$ be a sequence of independent Brownian motions defined on [0,1]. Define the following function $B: \mathbb{R}+ \to \mathbb{R}$:

$$B: t \mapsto B_{t-\lfloor t\rfloor}^{(\lfloor t\rfloor)} + \sum_{i=0}^{\lfloor t\rfloor-1} B_1^{(i)}.$$

Show that B is a Brownian motion.

Exercise 3 — A nowhere continuous version of the Brownian motion.

Given a Brownian motion, build a probability space with a random variable B_t for all $t \in \mathbb{R}_+$ such that:

- for every ω , the function $t \mapsto B_t(\omega)$ is nowhere continuous;
- for every $t_1 < \ldots < t_n$, the vector $(B_{t_1}, \ldots, B_{t_n})$ has the same distribution as if B were a Brownian motion.

Hint: change the value of B on a countable dense random subset of \mathbb{R} , so that the value at a fixed deterministic time is almost surely not changed.

Exercise 4 — Brownian motion is nowhere monotonous.

Let B be a Brownian motion. Show that almost surely, the function $t \mapsto B_t$ is not monotonous on any nonempty open interval.

Exercise 5 — L^2 theory and construction of the Brownian motion.

Let $H = L^2([0,1])$ with the usual inner product. For $t \ge 0$ let $I_t = \mathbb{1}_{[0,t]} \in H$. We also set $(e_i)_{i \in \mathbb{N}}$ to be an orthonormal basis of H.

(1) Check that $\langle I_s, I_t \rangle = s \wedge t$.

- (2) Suppose we could build a standard Gaussian random variable in H, that is $\xi \in H$ such that for every $x \in H$, $\langle x, \xi \rangle \sim \mathcal{N}(0, ||x||)$. How could a Gaussian process $(B_t)_{t \in [0,1]}$ such that $Cov(B_s, B_t) = s \wedge t$ be built from it?
- (3) Let $Z_i = \langle \xi, e_i \rangle$, so that $\xi = \sum_{i \in \mathbb{N}} Z_i e_i$. Show that the (Z_i) are independent standard Gaussians (Hint: compute the characteristic function of $(Z_{i_1}, \ldots Z_{i_p})$ for $p \geq 1$ and $(i_1, \ldots i_p) \in \mathbb{N}^p$). Deduce that we could then write the following equality in L^2 :

$$(\dagger) B_t = \sum_{n=0}^{\infty} Z_n \int_0^t e_i(s) ds$$

- (4) Show that ξ can not exist¹ (hint: compute its norm with the help of the basis e)
- (5) Nevertheless, show that in the case of the Haar wavelet basis ef L^2 : $h_0 = 1$ and for $n \ge 0$ and $0 \le k < 2^n$

$$h_{k,n} := 2^{n/2} \left(\mathbb{1}_{[2k/2^{n+1},(2k+1)/2^{n+1}]} - \mathbb{1}_{[(2k+1)/2^{n+1},(2k+2)/2^{n+1}]} \right),$$

the series in (\dagger) coincides with the Lévy construction of Brownian motion (and hence converges almost surely in $\mathcal{C}([0,1])$ to a Brownian motion).

- (6) What do we obtain in (†) with the Fourier basis $e_0 = 1$, and $e_m(t) = \sqrt{2}\cos(\pi mt)$?
- (7) \star Show also the almost sure convergence in $\mathcal{C}([0,1])$ of this series.

¹It is possible to build ξ in the space D' of distributions. It is then called a white noise.